K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=3x-2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)

Mặt khác: \(x^2+y^2=2m^2+2m+1=2\left(m^2+m+\dfrac{1}{2}\right)\)

                 \(=2\left(m^2+2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

 Dấu bằng xảy ra \(\Leftrightarrow m+\dfrac{1}{2}=0\Leftrightarrow m=-\dfrac{1}{2}\)

  Vậy ...

 

13 tháng 5 2018

định lười nhưng mà mới học, xử luôn cho nhớ

* hpt \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)

\(\Rightarrow7x=7m\Leftrightarrow x=m\)

* hpt \(\Leftrightarrow\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)

\(\Rightarrow7y=7m+7\Leftrightarrow y=m+1\)

* \(x^2+y^2=10\Leftrightarrow m^2+\left(m+1\right)^2=10\)

(tự làm tiếp nhé)

20 tháng 5 2018

Ôn tập hệ hai phương trình bậc nhất hai ẩn

9 tháng 6 2021

\(\hept{\begin{cases}3x-y=2m-1\\x+2y=3m+2\end{cases}\Leftrightarrow\hept{\begin{cases}3x-y=2m-1\\3x+6y=9m+6\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}-7y=-7m-7\\x+2y=3m+2\end{cases}}\)

\(\left(1\right)\Rightarrow y=\frac{-7\left(m+1\right)}{-7}=m+1\)(3)

Thay (3) vào (2) ta được : \(x+2m+2=3m+2\Leftrightarrow x=m\)(4)

Thay (3) ; (4) vào biểu thức trên ta được 

\(x^2+y^2=10\Rightarrow m^2+\left(m+1\right)^2=10\)

\(\Leftrightarrow m^2+m^2+2m+1=10\Leftrightarrow2m^2+2m-9=0\)

\(\Leftrightarrow m=\frac{-1\pm\sqrt{19}}{2}\)

a) Thay \(m=1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

  Vậy ...

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)

Ta có: \(x^2+y^2=5\) 

\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

  Vậy ...

c) Hệ phương trình luôn có nghiệm duy nhất

Ta có: \(x-3y>0\)

\(\Rightarrow m-3\left(-m-1\right)>0\)

\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)

  Vậy ...

a) Thay m=1 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)