Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\mx+x+m^2x-m^3+2m=2m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-m^2+2\\x\left(m+m^2+1\right)=m^3-1\end{matrix}\right.\)
Để hệ pt có nghiệm duy nhất :
\(\Leftrightarrow m^2+m+1>0\)
\(\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\) (luôn đúng)
Khi đó hệ pt có nghiệm duy nhất là :
\(\left\{{}\begin{matrix}x=m-1\\y=2-m\end{matrix}\right.\)
Vậy...
Ta có :
\(P=\left(m-1\right)\left(2-m\right)\)
\(=2m-m^2-2+m\)
\(=3m-m^2-2\)
\(=\frac{1}{4}-\left(m-\frac{3}{2}\right)^2\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)
Vậy...
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
2y=m-mx\\
2(m-1)x+(m-1).2y=2\end{matrix}\right.\)
\(\Rightarrow 2(m-1)x+(m-1)(m-mx)=2\)
\(\Leftrightarrow x[2(m-1)-m(m-1)]=2-m(m-1)\)
\(\Leftrightarrow x(2-m)(m-1)=(2-m)(m+1)(*)\)
Với $m=2$ thì PT $(*)$ có vô số nghiệm $x$, kéo theo HPT có vô số nghiệm $(x,y)$
Với $m=1$ thì PT $(*)$ vô nghiệm, kéo theo HPT vô nghiệm
Với $m\neq 1;m\neq 2$ thì PT $(*)$ có nghiệm duy nhất \(x=\frac{(2-m)(m+1)}{(2-m)(m-1)}=\frac{m+1}{m-1}\), kéo theo HPT có nghiệm $(x,y)$ duy nhất
Tóm lại để PT có nghiệm thì $m\neq 1$
\(\left\{{}\begin{matrix}\left|mx+y-2\right|\ge0\\\left|x+y-m\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|mx+y-2\right|+\left|y+y-m\right|\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}mx+y-2=0\\x+y-m=0\end{matrix}\right.\)
a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.
b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.
Bài 1:
Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x-2y=-1\\ 2x+y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-4y=-2\\ 2x+y=2\end{matrix}\right.\)
\(\Rightarrow (2x+y)-(2x-4y)=2-(-2)\)
\(\Leftrightarrow 5y=4\Rightarrow y=\frac{4}{5}\)
\(x=\frac{2-y}{2}=\frac{2-\frac{4}{5}}{2}=\frac{3}{5}\)
Vậy ...........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} mx-2y=m-2\\ y=m+1-2x\end{matrix}\right.\Rightarrow mx-2(m+1-2x)=m-2\)
\(\Leftrightarrow x(m+4)=3m(*)\)
Để HPT ban đầu có bộ nghiệm (x,y) duy nhất thì PT $(*)$ phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $m+4\neq 0$ hay $m\neq -4$
Bài 2:
a)
Khi $m=2$ thì hệ trở thành:
\(\left\{\begin{matrix}
x+2y=1\\
2x+y=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
2x+4y=2\\
2x+y=1\end{matrix}\right.\)
\(\Rightarrow (2x+4y)-(2x+y)=2-1\)
\(\Leftrightarrow 3y=1\Rightarrow y=\frac{1}{3}\)
Khi đó: \(x=1-2y=1-2.\frac{1}{3}=\frac{1}{3}\)
Vậy HPT có bộ nghiệm duy nhất $(x,y)=(\frac{1}{3}, \frac{1}{3})$
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} x=1-my\\ mx+y=1\end{matrix}\right.\Rightarrow m(1-my)+y=1\)
\(\Leftrightarrow y(1-m^2)=1-m(*)\)
Để HPT ban đầu có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất. Điều này xảy ra khi \(1-m^2\neq 0\Leftrightarrow m\neq \pm 1\)
Khi đó:
\(y=\frac{1-m}{1-m^2}=\frac{1}{1+m}\)
\(x=1-my=1-\frac{m}{m+1}=\frac{1}{m+1}\)
Vậy HPT có nghiệm \((x,y)=(\frac{1}{m+1}, \frac{1}{m+1})\)
Để \(x,y>0\Leftrightarrow \frac{1}{m+1}>0\Leftrightarrow m>-1\)
Kết hợp những điều vừa tìm được suy ra $m>-1$ và $m\neq 1$ thì thỏa mãn.
\(\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\m\left(x+y\right)=1-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\mx+\left(m+1\right)y=1\end{matrix}\right.\)
Nếu \(m=0\), hệ trở thành \(\left\{{}\begin{matrix}4y=2\\y=1\end{matrix}\right.\Rightarrow\) vô nghiệm
\(\Rightarrow m=0\left(tm\right)\)
Nếu \(m=-1\), hệ trở thành \(\left\{{}\begin{matrix}-x+3y=2\\-x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow m=-1\left(l\right)\)
Nếu \(m\ne0,m\ne-1\), yêu cầu bài toán thỏa mãn khi \(1=\dfrac{m+4}{m+1}\ne2\)
\(\Rightarrow\) không tồn tại m thỏa mãn
Vậy \(m=0\)