Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)
\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)
\(\Leftrightarrow\left(3x-y+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)
Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải
\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\\left(x-y\right)\left(xy+6\right)=12\end{matrix}\right.\)
Trừ trên cho dưới:
\(\left(x-y\right)\left(2x+3y-xy-6\right)=0\Leftrightarrow\left(x-y\right)\left(x-3\right)\left(2-y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x=3\\y=2\end{matrix}\right.\)
TH1: \(x=y\) thay vào pt đầu ta được \(0=12\) (vô nghiệm)
TH2: \(x=3\Rightarrow-3y^2+3x+6=0\Rightarrow\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\)
TH3: \(y=2\Rightarrow2x^2+2x-24=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy pt có 3 cặp nghiệm \(\left(x;y\right)=\left(3;-1\right);\left(3;2\right);\left(-4;2\right)\)
b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)
a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)
\(ĐK:x\ge-2;y\le4\)
\(PT\left(1\right)\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(y^3-6y^2+12y-8\right)=0\\ \Leftrightarrow\left(x-1\right)^3-\left(y-2\right)^3=0\\ \Leftrightarrow\left(x-y+1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y-2\right)+\left(y-2\right)^2\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x-y+1=0\\x^2-4x+xy+y^2-5y+7=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left(x^2+\dfrac{1}{4}y^2+4+xy-2y-4x\right)+\dfrac{3}{4}y^2-3y+3=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y-2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Thay \(x=1;y=2\) vào PT(2) ta thấy ko thỏa mãn
Với \(x-y+1=0\Leftrightarrow y=x+1\), thay vào PT(2)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\left(-2\le x\le3\right)\\ \Leftrightarrow\sqrt{x+2}+\sqrt{3-x}-3=x^3+x^2-4x-4\\ \Leftrightarrow\dfrac{2\sqrt{\left(x+2\right)\left(3-x\right)}-4}{\sqrt{x+2}+\sqrt{3-x}+3}=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow\dfrac{2\left[\left(x+2\right)\left(3-x\right)-4\right]}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=\left(x^2-x-2\right)\left(x+2\right)\\ \Leftrightarrow\left(x^2-x-2\right)\left(x+2\right)+\dfrac{2\left(x^2-x-2\right)}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[x+2+\dfrac{1}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}\right]=0\)
Với \(x\ge-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=2\Rightarrow x=3\end{matrix}\right.\left(tm\right)\)
Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(2;3\right)\right\}\)
mọi người giúp với