K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016

\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)

\(b,8x^3+y^3-8x^3+y^3=2y^3\)

6 tháng 6 2016

bấm hích nhé,mình sẽ àm cho bạn^^

19 tháng 10 2018

Biến đổi vế phải:

VP= (x+y)2 -2xy = x2+2xy+y2-2xy=x2+y2=VT

=> đpcm

=.= hok tốt!!

19 tháng 10 2018

Ta có:

\(x^2+y^2\)

\(=x^2+2xy+y^2-2xy\)

\(=\left(x+y\right)^2-2xy\)

Hok tốt nhé

17 tháng 7 2017

\(A=x^2+2xy+y^2-4x-4y+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(=3^2-4.3+1\)

\(=-2\)

7 tháng 10 2018

a, x2 + y2

= x2 + 2y + y2 - 2xy

= (x + y)2 - 2xy 

b, x3 + y

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= (x + y)3 - 3xy(x + y)

7 tháng 10 2018

a) Biến đổi VP :

\(\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2\left(=VT\right)\left(đpcm\right)\)

b) Biến đổi vế phải :

\(\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)\)

\(=x^3+3xy\left(x+y\right)+y^3-3xy\left(x+y\right)\)

\(=x^3+y^3\left(=VT\right)\left(đpcm\right)\)

25 tháng 8 2016

Chứng minh nó luôn > 0 là xong 

29 tháng 7 2021

\(3x^2+y^2+10x-2xy+26=0\)

\(\left(x-y\right)^2+2x^2+10x+26=0\)

\(\left(x-y\right)^2+\left(2x^2+10x+\frac{5\sqrt{2}}{2}^2\right)+\frac{27}{2}=0\)

\(\left(x-y\right)^2+\left(\sqrt{2}x+\frac{5\sqrt{2}}{2}\right)^2+\frac{27}{2}\ge\frac{27}{2}>0\)

vậy ko có giá trị xy thỏa mã đt

20 tháng 6 2017

a) \(-\left(x+2\right)\cdot\left(x^2-1x+4\right)\)

\(=-\left(x+2\right)\cdot\left(x^2-x+4\right)\)

\(=-\left(x^3-x^2+4x+2x^2-2x+8\right)\)

\(=-\left(x^3+x^2+2x+8\right)\)

\(=-x^3-x^2-2x-8\)

b) \(-\left(x+2y\right)\cdot\left(x^2-2xy+y^2\right)\)

\(=-\left(x^3-2x^2y+xy^2+2x^2y-4xy^2+2y^3\right)\)

\(=-\left(x^3-3xy^2+2y^3\right)\)

\(=-x^3+3xy^2-2y^3\)

c) \(-\left(5-a\right)\cdot\left(25+5a+a^2\right)\)

\(=-\left(125-a^3\right)\)

\(=-125+a^3\)

d) \(-\left(x-2y\right)\cdot\left(x^2+2xy+4y^2\right)\)

\(=-\left(x^3-8y^3\right)\)

\(=-x^3+8y^3\)

20 tháng 6 2017

Nguyễn Huy Túhình như câu b cũng sai đề nà

12 tháng 7 2016

a)8x2+12x2y+6xy2+y3

<=> ( 2x + y)3

6 tháng 10 2020

Bài 4: Chứng minh các hằng đẳng thức sau

a. x2+y2=(x+ y)2- 2xy

biến đổi vế phải ta được:

(x+ y)2- 2xy

=x2+2xy+y2-2xy

=x2+y2 bằng vế phải

=> biểu thức đã được chứng minh

b. (a+b)2-(a-b)(a+b)= 2b(a+b)

biến đổi vế trái ta được:

(a+b)2-(a-b)(a+b)

=a2+2ab+b2-(a2-b2)

=a2+2ab+b2-a2+b2

=2ab+2b2

=2b(a+b)