Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)
\(b,8x^3+y^3-8x^3+y^3=2y^3\)
Biến đổi vế phải:
VP= (x+y)2 -2xy = x2+2xy+y2-2xy=x2+y2=VT
=> đpcm
=.= hok tốt!!
Ta có:
\(x^2+y^2\)
\(=x^2+2xy+y^2-2xy\)
\(=\left(x+y\right)^2-2xy\)
Hok tốt nhé
\(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1\)
\(=-2\)
a, x2 + y2
= x2 + 2y + y2 - 2xy
= (x + y)2 - 2xy
b, x3 + y3
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= (x + y)3 - 3xy(x + y)
a) Biến đổi VP :
\(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\left(=VT\right)\left(đpcm\right)\)
b) Biến đổi vế phải :
\(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)\)
\(=x^3+3xy\left(x+y\right)+y^3-3xy\left(x+y\right)\)
\(=x^3+y^3\left(=VT\right)\left(đpcm\right)\)
\(3x^2+y^2+10x-2xy+26=0\)
\(\left(x-y\right)^2+2x^2+10x+26=0\)
\(\left(x-y\right)^2+\left(2x^2+10x+\frac{5\sqrt{2}}{2}^2\right)+\frac{27}{2}=0\)
\(\left(x-y\right)^2+\left(\sqrt{2}x+\frac{5\sqrt{2}}{2}\right)^2+\frac{27}{2}\ge\frac{27}{2}>0\)
vậy ko có giá trị xy thỏa mã đt
a) \(-\left(x+2\right)\cdot\left(x^2-1x+4\right)\)
\(=-\left(x+2\right)\cdot\left(x^2-x+4\right)\)
\(=-\left(x^3-x^2+4x+2x^2-2x+8\right)\)
\(=-\left(x^3+x^2+2x+8\right)\)
\(=-x^3-x^2-2x-8\)
b) \(-\left(x+2y\right)\cdot\left(x^2-2xy+y^2\right)\)
\(=-\left(x^3-2x^2y+xy^2+2x^2y-4xy^2+2y^3\right)\)
\(=-\left(x^3-3xy^2+2y^3\right)\)
\(=-x^3+3xy^2-2y^3\)
c) \(-\left(5-a\right)\cdot\left(25+5a+a^2\right)\)
\(=-\left(125-a^3\right)\)
\(=-125+a^3\)
d) \(-\left(x-2y\right)\cdot\left(x^2+2xy+4y^2\right)\)
\(=-\left(x^3-8y^3\right)\)
\(=-x^3+8y^3\)
Bài 4: Chứng minh các hằng đẳng thức sau
a. x2+y2=(x+ y)2- 2xy
biến đổi vế phải ta được:
(x+ y)2- 2xy
=x2+2xy+y2-2xy
=x2+y2 bằng vế phải
=> biểu thức đã được chứng minh
b. (a+b)2-(a-b)(a+b)= 2b(a+b)
biến đổi vế trái ta được:
(a+b)2-(a-b)(a+b)
=a2+2ab+b2-(a2-b2)
=a2+2ab+b2-a2+b2
=2ab+2b2
=2b(a+b)