K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)

Ta có : \(VT=\sqrt{x-2}+\sqrt{4-x}\Rightarrow VT^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

\(=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)

Theo Cauchy ta có : \(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)

\(\Rightarrow VT^2\le2+2=4\Rightarrow VT\le2\)

Ta lại có : \(VP=2x^2-5x-1=\left(2x^2-5x-3\right)+2=\left(2x-3\right)\left(x-1\right)+2\)

Mà \(2\le x\le4\Rightarrow\left(2x-3\right)\left(x-1\right)\ge0\Rightarrow VT\ge2\)

Ta thấy : \(VT\le2\le VP\) nên dấu "=" xảy ra \(\Leftrightarrow x=3\)

Vậy \(x=3\)

cảm ơn nhiều ạ mà vì sao nghĩ ra cách đó ạ có thể diễn giải giúp mình không ạ

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

4 tháng 10 2023

Pt xác định khi: 

\(\left\{{}\begin{matrix}5x-4\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{4}{5}\\x\le2\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{4}{5}\le x\le2\)

Nhưng trong TH này cậu phải làm cả hai nhé ! 

4 tháng 10 2023

\(\sqrt[]{5x-4}=2-x\)

Phải lấy điều kiện \(2-x\ge0\) vì phương trình trên có dạng :

\(\sqrt[]{A}=B\) nên khi đặt điều kiện \(B\ge0\) thì chắc chắn \(\sqrt[]{A}\ge0\)  

Nên không cần điều kiện \(A\ge0\) mà chỉ cần điều kiện \(B\ge0\) hay \(2-x\ge0\) là đủ.

9 tháng 8 2018

Mình cần gấp nha mn 😭😭 

22 tháng 7 2020

1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

11 tháng 7 2019

a) \(-\frac{1}{2}\times\sqrt{2x+1}=-\frac{3}{4}\)

\(\sqrt{2x+1}=\frac{-3}{4}:\frac{-1}{2}\)

\(\sqrt{2x+1}=\frac{3}{2}\)

\(\left(\sqrt{2x+1}\right)^2=\frac{9}{4}\)

\(2x+1=\frac{9}{4}\)

\(2x=\frac{9}{4}-1\)

\(2x=\frac{5}{4}\)

\(x=\frac{5}{4}:2\)

\(x=\frac{5}{8}\)