K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Đề ghi hk hỉu

14 tháng 3 2017

có mỗi chữ lượt viết sai thôi mà

15 tháng 3 2020

ABCDFGEKI

a,  có : ^FAD + ^DAE = 90

^BAE + ^DAE = 90

=> ^FAD = ^BAE 

xét tam giác FDA và tam giác EBA có : AB = AD do ABCD là hình vuông (gt)

^FDA = ^EBA = 90

=> tam giác FDA = tam giác EBA (cgv-gnk)

=> AF = AB (Đn)

=> tam giác AFB cân tại A (đn)

có AI là trung tuyến

=> AI _|_ EF                (1)

xét tam giác GIE và tam giác KIF có : ^GIE = ^KIF (đối đỉnh)

FI = IE do I là trung điểm của EF (gt)

EG // FK (gT) => ^GEI = ^IFK (slt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> EG = FK (đn)

mà EG // FK (gt)

=> EGFK là hình bình hành (dh) và (1)

=> EGFK là hình thoi (dh)

b, kẻ AC

AC là pg của ^BAC do ABCD là hình vuông (gt) => ^DAK + ^KAC = 45     

tam giác  AFE vuông cân (tự cm) => ^IAE = 45 => ^KAC + ^CAE = 45

=> ^DAK = ^CAE 

tam giác ADK vuông tại D => ^AKD = 90 - ^DAK (đl)

^FAC = 90 - ^CAE

=> ^AKD = ^FAC

Xét tam giác AFK và tam giác AFC có : ^AFC chung

=> tam giác AFK đồng dạng với tam giác AFC (g-g)

=> AF/FC = FK/AF

=> AF^2 = KF.KC

c, có BD và AC là đường chéo của hình vuông ABCD 

=> B;D thuộc đường trung trực của AC (2)

xét tam giác AFE vuông tại A có I là trung điểm của EF (gt) => AI = EF/2 (đl)

xét tam giác FEC vuông tại C có I là trung điểm của EF (gt) => CI = EF/2

=> AI = IC 

=> I thuộc đường trung trực của AC và (2)

=> B;I;D thẳng hàng 

d, Có EK = FK do EGFK là hình thoi (câu a)

FK = FD + DK

FD = BE do tam giác ABE = tam giác ADF (Câu a)

=> EK = BE + DK

có chu vi ECK = EC + KC + EK

=> chu vi ECK = EC + KC + BE + DK

= BC + DC

= 2BC 

mà BC = 6

=> Chu vi ECK = 12

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

7 tháng 7 2019

a. AE = AF: 
Δ ABE = Δ ADF vì: 
AB = AD ( cạnh hình vuông) 
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^) 
=> AE = AF 

b. Tứ gaíc EGFK là hình thoi 
EG // AB và AB // FK => EG // FK (*)

=>  \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong) 
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF 
theo giả thiết: IE = IF (2) 
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**) 
(*) và (**) => EGFK là hình bình hành 
vì AI là trung trực của EF => EG = FG 
vậy hình bình hành EGFK là hình thoi. 

c. tam giác FIK đồng dạng tam giác FCE 
Δ FIK ~ Δ FEC vì: 
\(\widehat{F}\)chung 
\(\widehat{KIF}=\widehat{ECF}\) = 1v 

d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi 
gọi cạnh hình vuông là a, ta có: 
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi

5 tháng 12 2024

MỌI NGƯỜI GIÚP MÌNH CÂU b VỚI Ạ!

qua đỉnh A hình bình hành ABCD vẽ đường thẳng d cắt BD, BC, CD lần lượt tại E, F, G. a. chứng minh rằng EA/EF = EG/EA b. xác định vị trí của đường thẳng d để tích EF.EG nhỏ nhất

29 tháng 4 2018

-(a+b)^3=-(1)^3=-1 cả hai đều đúng

29 tháng 7 2018

A B C D E I M P K F a x

a) Ta có tứ giác ABCD là hình vuông => AB=BC=CD=AD (=a)

Điểm I nằm trên AB => BI = AB - AI = a - x

Theo hệ quae ĐL Thales: \(\frac{BE}{AD}=\frac{BI}{AI}\Rightarrow BE=\frac{BI.AD}{AI}=\frac{\left(a-x\right).a}{x}=\frac{a^2-ax}{x}\)

Tương tự: \(\frac{AP}{BC}=\frac{AI}{BI}\Rightarrow AP=\frac{AI.BC}{BI}=\frac{ax}{a-x}\)

b) Ta thấy: AD // BC hay AD // CE => ^ADI = ^CED

Xét \(\Delta\)ADI và \(\Delta\)CED có: ^IAD = ^DCE (=900) ; ^ADI = ^CED => \(\Delta\)ADI ~ \(\Delta\)CED (g.g) (đpcm).

c) +) Áp dụng hệ quả ĐL Thales: \(\frac{PK}{AK}=\frac{BC}{BE}\). Mà \(\frac{BC}{BE}=\frac{DI}{EI}=\frac{PI}{CI}\)(Do BI//CD; EC//DP)

\(\Rightarrow\frac{PK}{AK}=\frac{PI}{CI}\)\(\Rightarrow\)IK // AC (ĐL Thales đảo) => ^AIK = ^BAC = 450 (So le trong)

Xét \(\Delta\)IAK: ^IAK = 900; ^AIK = 450 => \(\Delta\)IAK vuông cân tại A => AK=AI (đpcm).

+) Ta có IK // AC, AC vuông góc BD => IK vuông góc BD

Xét \(\Delta\)BDK: BI vuông góc DK (tại A); IK vuông góc BD; BI giao IK tại I => I là trực tâm \(\Delta\)BDK

=> DI vuông góc với BK. Hay DF vuông góc BK (đpcm).