K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: B và E đối xứng nhau qua AC

nên AC là đường trung trực của BE

=>AB=AE và CB=CE

Xét ΔCBA và ΔCEA có 

CB=CE

AB=AE

CA chung

Do đó: ΔCBA=ΔCEA

SUy ra: \(\widehat{CBA}=\widehat{CEA}=90^0\)

hay ΔAEC vuông tại E

b: Xéttứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

mà \(\widehat{CBA}=90^0\)

nên ABCD là hình chữ nhật

d: Gọi K là giao điểm của BE và AC

Xét ΔBDE có 

M là trung điểm của BD

K là trung điểm của BE

Do đó: MK là đường trung bình

=>MK//DE

Ta có: ABCD là hình chữ nhật

nên AD=BC

mà BC=CE
nên AD=CE

Xét tứ giác AEDC có DE//AC

nên AEDC là hình thang

mà AD=CE

nên AEDC là hình thang cân

21 tháng 11 2014

a) ADME là hình chữ nhật có ba góc vuông 

b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE

xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân

c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H

d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC

e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông

1 tháng 12 2014

A B C D M N K

a) Xét tứ giác AMDN có 3 góc vuông => AMDN là hình chữ nhật

b) Vì AD là đường trung tuyến của tam giác vuông ABC nên AD = DC

Tam giác NAD = tam giác NCD (CH - CGV) => AN = NC

Xét tứ giác ADCK có AC vuông góc với DK và AN = NC; DN = NK

=> ADCK là hình thoi

c) Để ADCK là hình vuông thì góc ADC = 90o

=> AD vừa là đường trung tuyến, vừa là đường cao của tam giác vuông ABC

=> Tam giác ABC vuông cân tại A

1 tháng 12 2014

Bài này dễ nên bạn tự suy nghĩ nha!!

8 tháng 7 2017

ôi má ơi! dễ mà!~

9 tháng 2 2019

Hỏi đáp Toán

a) Ta có: ^BAR+^DAR=^BAD=900 (1)

^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)

Từ (1) và (2) => ^BAR=^DAQ

Xét \(\Delta\)ABR và \(\Delta\)ADQ:

^ABR=^ADQ=900

AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)

^BAR=^DAQ

=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:

AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.

Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)

=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.

b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)

Tương tự: AN vuông góc với PS (4)

Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450

AN là phân giác của ^PAS => ^SAN=450

=> ^MAR+^SAN=^MAN=900 (5)

Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)

c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS

Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H

=> P là trực tâm của tam giác SQR (đpcm).

d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.

Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN

=> CN=AN => N nằm trên đường trung trực của AC (6)

Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM

Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM

=> CM=AM => M nằm trên đường trung trực của AC (7)

Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)

e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường

=> BD là trung trực của AC (9)

Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).

10 tháng 2 2019

thank youkhocroi