Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: B và E đối xứng nhau qua AC
nên AC là đường trung trực của BE
=>AB=AE và CB=CE
Xét ΔCBA và ΔCEA có
CB=CE
AB=AE
CA chung
Do đó: ΔCBA=ΔCEA
SUy ra: \(\widehat{CBA}=\widehat{CEA}=90^0\)
hay ΔAEC vuông tại E
b: Xéttứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
mà \(\widehat{CBA}=90^0\)
nên ABCD là hình chữ nhật
d: Gọi K là giao điểm của BE và AC
Xét ΔBDE có
M là trung điểm của BD
K là trung điểm của BE
Do đó: MK là đường trung bình
=>MK//DE
Ta có: ABCD là hình chữ nhật
nên AD=BC
mà BC=CE
nên AD=CE
Xét tứ giác AEDC có DE//AC
nên AEDC là hình thang
mà AD=CE
nên AEDC là hình thang cân
a) ADME là hình chữ nhật có ba góc vuông
b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE
xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân
c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H
d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC
e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông
A B C D M N K
a) Xét tứ giác AMDN có 3 góc vuông => AMDN là hình chữ nhật
b) Vì AD là đường trung tuyến của tam giác vuông ABC nên AD = DC
Tam giác NAD = tam giác NCD (CH - CGV) => AN = NC
Xét tứ giác ADCK có AC vuông góc với DK và AN = NC; DN = NK
=> ADCK là hình thoi
c) Để ADCK là hình vuông thì góc ADC = 90o
=> AD vừa là đường trung tuyến, vừa là đường cao của tam giác vuông ABC
=> Tam giác ABC vuông cân tại A
a) Ta có: ^BAR+^DAR=^BAD=900 (1)
^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)
Từ (1) và (2) => ^BAR=^DAQ
Xét \(\Delta\)ABR và \(\Delta\)ADQ:
^ABR=^ADQ=900
AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)
^BAR=^DAQ
=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:
AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.
Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)
=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.
b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)
Tương tự: AN vuông góc với PS (4)
Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450
AN là phân giác của ^PAS => ^SAN=450
=> ^MAR+^SAN=^MAN=900 (5)
Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)
c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS
Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H
=> P là trực tâm của tam giác SQR (đpcm).
d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.
Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN
=> CN=AN => N nằm trên đường trung trực của AC (6)
Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM
Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM
=> CM=AM => M nằm trên đường trung trực của AC (7)
Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)
e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường
=> BD là trung trực của AC (9)
Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).