Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
vẽ thêm Dựng đứng D đường thẳng vuông góc với DE cắt BC tại P
Trong tam giác DPF ta có :(theo đlý số 4 hệ thức lượng)
----> 1/CD2 =1/DP2 +1/DF2
mà CD = DA(cạnh hình vuông )
-----> ^D1 =^D2 (2 góc tương ứng )
---__> tam giác DAE= tam giác DCP
------> DE=DP( 2 góc tương ứng ) ----> 1/ DA2 =1/DE2 + 1/DF2
a: \(\widehat{ADE}+\widehat{EDC}=90^0\)
\(\widehat{KDC}+\widehat{EDC}=90^0\)
Do đó: \(\widehat{ADE}=\widehat{KDC}\)
Xét ΔADE vuông tại A và ΔCDK vuông tại C có
DA=DC
\(\widehat{ADE}=\widehat{KDC}\)
Do đó: ΔADE=ΔCDK
=>DE=DK
Xét ΔDEK có
\(\widehat{EDK}=90^0\)
DE=DK
Do đó: ΔDEK vuông cân tại D
b: Xét ΔDFK vuông tại D có DC là đường cao
nên \(\dfrac{1}{DK^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\)
=>\(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\) không đổi
1)
Kẻ tia Dx vuông góc với DF, Dx cắt BC tại M
tam giác DFM vuông tại D có DC là đường cao
dựa vào hệ thức lượng tam giác vuông, ta có:
\(\frac{1}{DF^2}+\frac{1}{DM^2}=\frac{1}{DC^2}\)
Mà DM = ED (chứng minh tam giác AED = tam giác CMD)
DC = AD (hình vuông ABCD)
=> đpcm
Từ A kẻ đường thẳng vuông góc với AN cắt CD tại Q
Ta có: \(\angle MAQ+\angle MCQ=90+90=180\Rightarrow AMCQ\) nội tiếp
\(\Rightarrow\angle AMQ=\angle ACQ=45\) mà \(\Delta MAQ\) vuông tại A
\(\Rightarrow\Delta MAQ\) vuông cân tại A \(\Rightarrow AM=AQ\)
Áp dụng hệ thức lượng vào tam giác vuông \(QAN\) có \(AD\bot NQ\)
\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AQ^2}+\dfrac{1}{AN^2}\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
Lời giải:
Vì \(AD\parallel CF\) nên áp dụng định lý Talet:
\(\frac{DE}{EF}=\frac{AE}{EB}\Rightarrow \frac{DE}{DE+EF}=\frac{AE}{AE+EB}\Rightarrow \frac{DE}{DF}=\frac{AE}{AB}\)
\(\Rightarrow DF=\frac{DE.AB}{AE}\)
Do đó:
\(\frac{1}{DE^2}+\frac{1}{DF^2}=\frac{1}{DE^2}+\frac{AE^2}{DE^2AB^2}=\frac{AB^2+AE^2}{DE^2.AB^2}\)
\(=\frac{AD^2+AE^2}{DE^2.AB^2}=\frac{DE^2}{DE^2.AB^2}\) (định lý Pitago)
\(=\frac{1}{AB^2}=\frac{1}{AD^2}\)
Ta có đpcm
Hình vẽ: