Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Các góc APH, góc AQM = 9o độ nên các điểm A,P,Q, M thuộc đường tròn tâm O đường kính AM
b. ^AHM = 90 độ nên H trên (O) . Xét hai tg PBH và tg MBA có ^PBH chung ^BPH = ^AMB(cùng bù ^APH) nên tg PBH đồng dạng tg MBA nên có : BP.BA = BH.BM
c. Tg ABC đều có AH trung tuyến nên AH phân giác suy ra ^PAH = ^CAQ = ^QAH nên cung PH = cung HQ nên OH là bán kính qua điểm chính giửa của cung nên qua trung điểm của dây PQ vậy OH vuông góc PQ.
d.Có PQ > AC nmaf AC > AH nên PQ >AH
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [M, A] Đoạn thẳng g: Đoạn thẳng [D, M] Đoạn thẳng h: Đoạn thẳng [B, M] Đoạn thẳng i: Đoạn thẳng [C, M] Đoạn thẳng j: Đoạn thẳng [E, G] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [A, D] Đoạn thẳng n: Đoạn thẳng [G, F] Đoạn thẳng p: Đoạn thẳng [H, F] Đoạn thẳng q: Đoạn thẳng [D, B] Đoạn thẳng r: Đoạn thẳng [C, B] O = (5.56, -3.6) O = (5.56, -3.6) O = (5.56, -3.6) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c M = (4.29, -4.84) M = (4.29, -4.84) M = (4.29, -4.84) Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm H: Trung điểm của g Điểm H: Trung điểm của g Điểm H: Trung điểm của g
Cô hướng dẫn nhé.
Gọi E, F, G, H lần lượt là trung điểm của MA, MB, MC và MD.
Theo tính chất đường trung bình, ta có HE // AD; EG // AC nên
\(\widehat{HEG}=\widehat{HEM}+\widehat{MEG}=\widehat{DAM}+\widehat{MAC}=\widehat{DAC}\) (Các góc đồng vị bằng nhau)
Tương tự \(\widehat{HFG}=\widehat{HFM}+\widehat{MFG}=\widehat{DBM}+\widehat{MBC}=\widehat{DBC}\)
Mà \(\widehat{DAC}=\widehat{DBC}\) (Hai góc nội tiếp cùng chắn cung DC)
Vậy \(\widehat{HEG}=\widehat{HFG}\) hay EFGH là tứ giác nội tiếp. Vậy 4 điểm E, F, G, H cùng thuộc một đường tròn.
Trường hợp hình dưới đây, ta làm tương tự, nhưng xét hiệu hai góc.
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [M, A] Đoạn thẳng g: Đoạn thẳng [D, M] Đoạn thẳng h: Đoạn thẳng [B, M] Đoạn thẳng i: Đoạn thẳng [C, M] Đoạn thẳng j: Đoạn thẳng [E, G] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [A, D] Đoạn thẳng n: Đoạn thẳng [G, F] Đoạn thẳng p: Đoạn thẳng [H, F] Đoạn thẳng q: Đoạn thẳng [D, B] Đoạn thẳng r: Đoạn thẳng [C, B] O = (5.56, -3.6) O = (5.56, -3.6) O = (5.56, -3.6) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c M = (1.68, -3.19) M = (1.68, -3.19) M = (1.68, -3.19) Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm H: Trung điểm của g Điểm H: Trung điểm của g Điểm H: Trung điểm của g