K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

a) Tam giác ABDABD cân tại BB nên ˆBAK=180o−ˆABD2BAK^=180o−ABD^2

⇒ˆABK=45o−ˆB2⇒ˆAKC=ˆABC+ˆBAK=45o+ˆB2⇒ABK^=45o−B^2⇒AKC^=ABC^+BAK^=45o+B^2

ˆKAC=90o−(45o−ˆB2)=45o+ˆB2KAC^=90o−(45o−B^2)=45o+B^2

⇒ˆAKC=ˆKAC⇒ΔAKC⇒AKC^=KAC^⇒ΔAKC cân tại C

Tương tự ta cũng có ΔBALΔBAL cân tại B.

b) Áp dụng định lý ta - lét ta có :

IGHG=IGKC.BDHG.KCBD=DGDC.DCCG.ACAB=ABAC.ACAB=1IGHG=IGKC.BDHG.KCBD=DGDC.DCCG.ACAB=ABAC.ACAB=1

⇒IG=HG⇒⇒IG=HG⇒ tam giác IHGIHG vuông cân.

Chứng minh tương tự cũng có tam giác IGJIGJ vuông cân.

⇒ΔIHJ⇒ΔIHJ là tam giác vuông cân.

Hình gửi kèm

  • 32123.PNG
28 tháng 3 2018

mình ghi nhanh quá mình ghi lộn b) \(\frac{IG}{HG}=\frac{IG}{HC}.\frac{BD}{HG}.\frac{KC}{BD}=\frac{DG}{DC}.\frac{DC}{CG}.\frac{AC}{AB}=\frac{AB}{AC}.\frac{AC}{AB}=1\)

a: BD=căn 8^2+6^2=10cm

Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5

=>góc DBC=37 độ

=>góc BDC=53 độ

b: CH=8*6/10=4,8cm

BH=BC^2/BD=64/10=6,4cm

 

22 tháng 10 2016

a/ Tam giác BMD vuông tại B có BI là trung tuyến nên IB=MD/2=ID lại có CB = CD
=> IC là đường trung trực của đoạn thẳng BD
=> IC qua trung điểm O của BD hay I,O,C thẳng hàng.
Mặt khác: A,O,C thẳng hàng (O là trung điểm AC)
Vậy A,O,I,C thẳng hàng.
b/ Ta có: AFD = CID (cùng bù với góc AID)
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc CID = CED (2 đỉnh kề cùng nhìn cạnh CD dưới góc bằng nhau).
Do đó: góc AFD = CED.
c/ Tự chứng minh tam giác AFD = tam giác CED => DF = DE
EF là trung trực của đoạn thẳng MD => DF = FM và DE = EM
Từ đó suy ra DF=FM=EM=DE => DEMF là hình thoi (1)
=> DI là phân giác của góc EDF.
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc IDE = góc ICE = 45 độ => Góc EDF = 2.IDE = 90 độ (2)
Từ (1) và (2) => DEMF là hình vuông.

21 tháng 10 2016

bvczakk

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0