Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề sai trầm trọng:+ trên đề không có N mà bạn ghi là AN cắt CE trong khi không có N
+ BK là đoạn bằng tổng của BE và EK mà bạn lại ghi là BK = BE

Kẻ BH // với AC
Ta có :
AB=BD
AH//AC
=>BH là đường trung bình của tam giác ADK
=> BH =1/2 AK
Xét ΔBHM và ΔKMC có :
KMC^ = BMH^ (đối đỉnh)
CM=MB
ˆMBH=ˆCKM ( so le trong )
=> ΔBHM và ΔKMC (g-c-g)
=> KC=BH = 1/2 AK
Hay AK= 2 KC
Kẻ \(BH\text{//}AC\), ta có :
\(AB=BD\)
\(AH\text{//}AC\)
\(\Rightarrow BH\) là đường trung bình của \(\bigtriangleup ADK\)
\(\Rightarrow BH=\frac{1}{2}AK\)
Xét \(\bigtriangleup BHM\) và \(\bigtriangleup KMC\) có
\(\widehat{KMC}=\widehat{BMH}\) (đđ)
\(CM=MC\)
\(\widehat{MBH}=\widehat{CKM}\) (so le trong)
\(\Rightarrow\bigtriangleup BHM\) và \(\bigtriangleup KMC\) (g.c.g)
\(\Rightarrow KC=BH=\frac{1}{2}AK\) hay \(AK=2KC\)

d.
Dễ dàng chứng minh AOMF là hcn (tứ giác 3 góc vuông) =>AM=FO và AM, FO cắt nhau tại trung điểm I của mỗi đường
\(=IA=IM=IF=IO\)
AH là đường cao nên tam giác AHM vuông tại H =>HI là trung tuyến ứng với cạnh huyền
\(\Rightarrow HI=\frac12AM=IA=IM\)
\(\Rightarrow HI=IF=IO\)
=>Tam giác OHF vuông tại H (trung tuyến bằng 1 nửa cạnh tương ứng hạ xuống)
=>OH⊥PF (1)
Do MF||AC (cùng vuông góc AB) và M là trung điểm BC nên F là trung điểm AB
=>OF là đường trung bình tam giác ABC =>OF||BC (2)
Do F là trung điểm AB và tam giác AHB vuông tại H (gt) nên HF là trung tuyến ứng với cạnh huyền
=>HF=AF=BF
Mà OM=AF (AOMF là hcn theo dòng đầu) =>OM=HF (3)
Từ (2),(3) =>OMHF là hình thang cân =>∠MOF=∠HFO
=>ΔPFO cân tại P (hai góc đáy bằng nhau)
Mà I là trung điểm OF =>PI là trung tuyến đồng thời là đường cao của tam giác PFO (4)
Tứ giác AOMF là hcn nên ∠FMO=90 độ =>FM⊥OP (5)
Từ (1),(4),(5) =>3 đường thẳng FM, OH, PI là 3 đường cao của tam giác OPF
=>3 đường thẳng đã cho đồng quy

Xét ΔABI có MK//BI
nên MK/BI=AK/AI
=>MK/CI=AK/AI(1)
Xét ΔACI có NK//IC
nên NK/IC=AK/AI(2)
Từ (1) và (2) suy ra MK=KN
hay K là trung điểm của MN