K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

A B C D Q P R S H M N

a) Ta có: ^BAR+^DAR=^BAD=900 (1)

               ^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)

Từ (1) và (2) => ^BAR=^DAQ

Xét \(\Delta\)ABR và \(\Delta\)ADQ:

^ABR=^ADQ=900

AB=AD                             => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)

^BAR=^DAQ

=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:

AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.

Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)

=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.

b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)

Tương tự: AN vuông góc với PS (4)

Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450

           AN là phân giác của ^PAS => ^SAN=450

=> ^MAR+^SAN=^MAN=900 (5)

Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)

c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS

Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H

=> P là trực tâm của tam giác SQR (đpcm).

d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.

Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN

=> CN=AN => N nằm trên đường trung trực của AC (6)

Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM

              Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM

=> CM=AM => M nằm trên đường trung trực của AC (7) 

Từ (6) và (7) =>  MN là trung trực của AC (đpcm). (8)

e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường

=> BD là trung trực của AC (9)

Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).

30 tháng 4 2020

R A M B H Q C D S N P

a) Xét tam giác vuông ABR và ADQ có:

AB = AD (gt)

Góc BAR + góc BAP = 90 độ

Góc DAQ + góc BAP = 90 độ

=> Góc BAR = Góc DAQ

=> Tam giác vuông ABR = tam giác vuông ADQ (cạnh góc vuông – góc nhọn kề)

=> AR = AQ (2 cạnh tương ứng)

=> Tam giác AQR cân tại A.

CMTT ta có tam giác ADS = tam giác ABP

=> AS = AP => Tam giác APS cân tại A.

b) Tam giác AQR cân tại A => Trung tuyến AM đồng thời là đường cao.

=> AM vuông góc với QR => Góc AMH = 90 độ

Tương tự: Tam giác APS cân tại A => Trung tuyến AN đồng thời là đường cao.

=> AN vuông góc với SP => góc ANP = 90 độ hay góc ANH= 90 độ.

Tam giác AQR vuông cân tại A => Góc AQR = góc ARQ = 45 độ => Góc PQH = 45 độ.

Tam giác APS vuông cân tại A => góc ASP = góc APS = 45 độ => góc QPH = 45 độ (đối đỉnh).

Xét tam giác PHQ có: Góc PQH + góc QPH = 45 độ + 45 độ = 90 độ

=> Tam giác PHQ vuông cân tại H => PH vuông góc với PQ

=> góc NHM = 90 độ

Xét tứ giác AMHN có: Góc AMH = góc ANH = góc NHM = 90 độ

=> AMHN là hình chữ nhật (dhnb)

c) Xét tam giác SQR có:

BC vuông góc CD => RC vuông góc SQ => RC là đường cao.

AP vuông góc AR => QA vuông góc RS => QA là đường cao.

Mà RC cắt QA tại P

Vậy P là trực tâm tam giác SQR.

d) Tam giác ANP vuông tại A có trung tuyến AN => AN = SP/2

    Tam giác CSP vuông tại C có trung tuyến CN => CN = SP/2

=> AN = CN => N thuộc trung trực của AC.

CMTT ta có MA = MC => M thuộc trung trực của AC.

Vậy MN là trung trực của AC.

e) Ta có BA = BC (gt) => B thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => B thuộc MN

Tương tự DA = DC (gt) => D thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => D thuộc MN

Vậy M, B, N, D thẳng hàng.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông gócvới nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tiađối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.a) Chứng minh các tam giác APS, AQR là các tam giác cân.b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.Chứng minh tứ giác AMHN là hình chữ...
Đọc tiếp

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho AM=1/2DB
. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

0