Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu d, là câu riêng luôn rồi nhé
Đặt các cạnh hình vuông là a, BM= BE= x
\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)
\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)
Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)
\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)
\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)
\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)
Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C
Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!!
a) ABCD là hình zuông
=>\(\widehat{BAM}+\widehat{MAD}=90^0\left(1\right)\)
AMHN hình zuông
=>\(\widehat{NAD}+\widehat{MAD=90^0\left(2\right)}\)
từ 1 zà 2 => góc BAM = NAD
tự xét tam giác AND zà tam giác AMB (c.g.c)
=> BM=ND (dpcm)
b) ABCD là hình zuông
=> góc ADF =90 độ
=> góc ADN+ góc ADF=góc NDC
=>90 độ +90 độ =góc NDc
=> góc NDc =180 độ
=> N,D ,C thẳng hàng (dpcm)
c) gọi là là gia điểm 2 đg chéo AH , MN của hình zuông AMHN
=> O là tâm đối xứng của hình zuông AMHN
=> AH là đường trung trực của đoạn MN , mà E , F thuộc đoạn AH
=> EN=EM zà FM=FN (3)
tự xét tam giác zuông EOM = tam giác zuông FON ( cạnh góc zuông , góc nhọn)
=> EM = NF (dpcm)(4)
từ 3 zà 4
=> EN=EM=FM=FN
=> tứ giác MENF là hình thoi
d) từ 5 => FM=FN=FD+DN
Mà DN=MB(cm câu a)
=> MF=DF+MB
gọi chu zi của tam giác MCF là p zà cạnh hình zuông ABCD là a
=> p=MC+CF+MF=MC+CF+BM+DF=(MC+BM)+(CF+DF)=BC+CD=a+a=2a
hình zuông ABCD cho trc => a ko đổi => 2a ko đổi=> p ko đổi
=> chu zi tam giác MCF ko đổi khi M thay đổi zị trí trên BC
https://olm.vn/hoi-dap/detail/247531973964.html
Bạn vào xem thử đi
Có bài trả lời của bạn nào rồi á