Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(DN=NC=\dfrac{DC}{2}\)(N là trung điểm của DC)
mà AB=DC(Hai cạnh đối trong hình bình hành ABCD)
nên AM=MB=DN=NC
Xét tứ giác AMCN có
AM//CN(AB//CD, M∈AB, N∈CD)
AM=CN(cmt)
Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác AMND có
AM//ND(AB//CD, M∈AB, N∈CD)
AM=ND(cmt)
Do đó: AMND là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: \(AB=2\cdot AM\)(M là trung điểm của AB)
mà \(AB=2\cdot AD\)(gt)
nên AM=AD
Hình bình hành AMND có AM=AD(cmt)
nên AMND là hình thoi(Dấu hiệu nhận biết hình thoi)
⇒Hai đường chéo AN và DM vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)
hay AN⊥DM(đpcm)
c) Ta có: AN và DM vuông góc với nhau tại trung điểm của mỗi đường(cmt)
mà AN cắt DM tại E(gt)
nên E là trung điểm chung của AN và DM
Xét tứ giác BMNC có
BM//NC(AB//CD, M∈AB, N∈CD)
BM=NC(cmt)
Do đó: BMNC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
⇒Hai đường chéo BN và MC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà BN cắt MC tại F(gt)
nên F là trung điểm chung của MC và BN
Ta có: \(EN=\dfrac{AN}{2}\)(E là trung điểm của AN)
\(MF=\dfrac{MC}{2}\)(F là trung điểm của MC)
mà AN=MC(Hai cạnh đối trong hình bình hành AMCN)
nên EN=MF
Ta có: AN//MC(Hai cạnh đối trong hình bình hành AMCN)
mà E∈AN(cmt)
và F∈MC(cmt)
nên EN//MF
Ta có: AN⊥MD(cmt)
mà AN cắt MD tại E(gt)
nên NE⊥ME tại E
hay \(\widehat{MEN}=90^0\)
Xét tứ giác EMFN có
EN//MF(cmt)
EN=MF(cmt)
Do đó: EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành EMFN có \(\widehat{MEN}=90^0\)(cmt)
nên EMFN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
⇒EF=MN(Hai đường chéo trong hình chữ nhật EMFN)
- Hình vẽ:
a) - Xét △EDM có:
AB//DM (ABCD là hình thang có 2 đáy là AB và CD).
=>\(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) (định lí Ta-let) (1).
- Xét △FCM có:
AB//CM (ABCD là hình thang có 2 đáy là AB và CD).
=>\(\dfrac{BF}{MF}=\dfrac{AB}{CM}\) (định lí Ta-let) (2).
- Từ (1) và (2) và \(CM=DM\) (M là trung điểm BC) suy ra:
\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\).
- Xét △ABM có:
\(\dfrac{AE}{EM}=\dfrac{BF}{MF}\) (cmt)
=>\(EF\)//\(AB\) (định lí Ta-let đảo)nên\(EF\)//\(AB\)//\(CD\)
b) -Xét △ADM có:
HE//DM (cmt).
=>\(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (định lí Ta-let). (3)
- Xét △ACM có:
EF//CM (cmt)
=>\(\dfrac{EF}{CM}=\dfrac{AE}{AM}\) (định lí Ta-let) (4)
- Từ (3) và (4) và \(DM=CM\) (M là trung điểm BC) suy ra: \(HE=EF\)
-Xét △BDM có:
EF//DM (cmt).
=>\(\dfrac{EF}{DM}=\dfrac{BF}{BM}\)(định lí Ta-let). (5)
- Xét △BCM có:
NF//CM (cmt)
=>\(\dfrac{NF}{CM}=\dfrac{BF}{BM}\) (định lí Ta-let) (6)
- Từ (5) và (6) và \(CM=DM\) (M là trung điểm BC) suy ra: \(NF=EF\)
Mà \(HE=EF\) nên \(HE=EF=NF=\dfrac{1}{3}HN\).
c) -Ta có: \(\dfrac{HE}{DM}=\dfrac{AE}{AM}\) (cmt)
=>\(\dfrac{DM}{HE}=\dfrac{AM}{AE}\).
=>\(\dfrac{DM}{HE}-1=\dfrac{EM}{AE}\) (7)
- Ta có: \(\dfrac{AE}{EM}=\dfrac{AB}{DM}\) nên \(\dfrac{EM}{AE}=\dfrac{DM}{AB}\). (8)
- Từ (7) và (8) suy ra:
\(\dfrac{DM}{HE}-1=\dfrac{DM}{AB}\)
=>\(\dfrac{DM}{HE}=\dfrac{DM}{AB}+1=\dfrac{DM+AB}{AB}\)
=>\(HE=\dfrac{AB.DM}{AB+DM}=\dfrac{7,5.\left(12.\dfrac{1}{2}\right)}{7,5+\left(12.\dfrac{1}{2}\right)}=\dfrac{10}{3}\)
=>\(HN=3HE=3.\dfrac{10}{3}=10\) (cm).