Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy điểm G đối xứng với E qua M. Khi đó, MN là đường tron bình của \(\Delta\)EFG => MN // FG (1)
Xét (O) có 2 cát tuyến CFA và CMD => \(\frac{CA}{CD}=\frac{CM}{CF}\) (Do \(\Delta\)CMF ~ \(\Delta\)CAD)
Áp dụng ĐL đường phân giác trong tam giác ta có: \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{CA}{CD}=\frac{AB}{BD}\)
Suy ra: \(\frac{CM}{CF}=\frac{AB}{BD}=\frac{BM}{BE}\) (Vì \(\Delta\)ABD ~ \(\Delta\)MBE). Mà CM=BM nên BE = CF
Dễ thấy: Tứ giác BECG là hình bình hành => BE = CG và BE//CG. Do đó: CF = CG => \(\Delta\)GFC cân tại C
=> ^CFG = (1800 - ^GCF)/2 = (1800 - ^BAC)/2 (Vì BE//CG) = ^DAx = ^CAy => FG // AD (2 góc đồng vị bằng nhau) (2)
Từ (1) và (2) => MN // AD (đpcm).
P/S: Đường tròn (ADM) không cắt tia đối tia AC cũng được nhé bn. Trong trường hợp nó cắt tia đối thì c/m tương tự.
nhìn thấy rồi nhưng k trước mới giải bài này sau dễ lắm
sao hình vuông có bốn cạnh