Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Đổi \(3h20p=\frac{10}{3}h\)
\(3h40p=\frac{11}{3}h\)
Gọi vận tốc của xe máy thứ nhất là: x(km/h) (x>3)
=> Vận tốc của xe máy thứ hai là: x−3(km/h)
Quãng đường xe máy thứ nhất đi từ A đến B là: \(\frac{10}{3}x\left(km\right)\)
Quãng đường xe máy thứ hai đi từ A đến B là: \(\left(x-3\right).\frac{11}{3}\left(km\right)\)
Vì quãng đường từ A đến B là bằng nhau nên ta có phương trình:
\(\frac{10}{3}x=\left(x-3\right).\frac{11}{3}\)
\(\Leftrightarrow x=33\) ( nhận)
=> Vận tốc của xe máy thứ hai là: 33−3=30(km/h)
=> Quãng đường từ A đến B: \(\frac{10}{3}.33=110\left(km\right)\)
Vậy xe thứ nhất đi với vận tốc 33km/h, xe thứ hai đi với vận tốc 30km/h và quãng đường AB là 110km
Bài 2 :
a.Vì ◊ABCD là hình vuông
\(\Rightarrow AC\) là phân giác \(\widehat{BAD}\)
\(\Rightarrow AE\) là phân giác \(\widehat{BAM}\Rightarrow E\) nằm giữa cung BM
\(\Rightarrow EM=EB\Rightarrow\Delta BEM\) cân tại E
Mà BM là đường kính của (O)
\(\Rightarrow\widehat{BEM}=90^0\Rightarrow\Delta BEM\) vuông cân tại E
b ) Vì ◊ABCD là hình vuông
\(\Rightarrow AC\) là trung trực của BD
Mà \(E\in AC\Rightarrow\Delta EMD\) cân tại E
\(\Rightarrow\widehat{EMD}=\widehat{EDM}\)
\(\Rightarrow90^0-\widehat{EMD}=90^0-\widehat{EDM}\)
\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)
=> ED=EK
\(\Rightarrow EK=ED=EM=EB\Rightarrow B,M,D,K\in\left(E,ED\right)\)
d . Từ câu c
=> ◊ BKDM nội tiếp
\(\Rightarrow\widehat{MBK}=180^0-\widehat{MDK}=180^0-90^0=90^0\)
\(\Rightarrow BK\perp BM\Rightarrow OB\perp BK\)
\(\Rightarrow BK\) là tiếp tuyến của (O)
Ta có: ΔBAO vuông tại A
=>ΔBAO nội tiếp đường tròn đường kính BO
=>A nằm trên đường tròn đường kính BO(1)
Ta có: ΔBMO vuông tại M
=>ΔBMO nội tiếp đường tròn đường kính BO
=>M nằm trên đường tròn đường kính BO(2)
Từ (1),(2) suy ra A,B,M,O cùng thuộc đường tròn đường kính BO
cậu tự làm đi chứ cứ bảo người khác làm hộ ai thấy mik nói đúng cho mik nhé
Lời giải:
a)
Theo bổ đề: Trong tam giác vuông, trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền dễ dàng suy ra $A\in (O)$
$\Rightarrow AMEB$ là tứ giác nội tiếp
$\Rightarrow \widehat{MBE}=\widehat{MAE}=45^0$ (1)
$\widehat{BEM}=90^0$ (góc nt chắn nửa đường tròn) nên $BME$ là tam giác vuông tại $E$ (2)
Từ $(1);(2)$ suy ra $BME$ là tam giác vuông cân tại $E$.
b)
Từ kết quả phần a suy ra $EM=EB(3)$
Dễ dàng chứng minh $\triangle BEC=\triangle DEC$ (c.g.c)
$\Rightarrow BE=DE(4)$
Từ $(3);(4)\Rightarrow EM=ED$ (đpcm)
c)
Xét tứ giác $BECK$ có $\widehat{BEK}=\widehat{BCK}$ và cùng nhìn cạnh $BK$ nên $BECK$ là tứ giác nội tiếp.
$\Rightarrow \widehat{EBK}=\widehat{ECD}=\widehat{ACD}=45^0$
Do đó:
$\widehat{MBK}=\widehat{MBE}+\widehat{EBK}=45^0+45^0=90^0$
Xét tớ giác $BMDK$ có $\widehat{MBK}+\widehat{MDK}=90^0+90^0=180^0$ nên $BMDK$ là tứ giác nội tiếp
Suy ra đpcm.
d)
$\widehat{MBK}=90^0$ nên $MN\perp BK$ hay $OB\perp BK$
Do đó BK là tiếp tuyến của $(O)$ (đpcm)
Hình vẽ: