Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O M N E K H
1) Ta có: ^MOB + ^BON = ^MON =900; ^NOC + ^BON = ^BOC = 900
=> ^MOB = ^NOC.
Xét \(\Delta\)OMB và \(\Delta\)ONC: ^MOB = ^NOC (cmt); OB=OC; ^OBM = ^OCN (=450)
=> \(\Delta\)OMB=\(\Delta\)ONC (g.c.g) => OM=ON (2 cạnh tương ứng)
Xét \(\Delta\)MON có: ^MON=900; OM=ON => \(\Delta\)MON vuông cân tại O (đpcm).
2) Ta có: \(\Delta\)OMB=\(\Delta\)ONC (cmt) => BM=CN => AB-BM=BC-CN => AM=BN
Suy ra \(\frac{AM}{BM}=\frac{BN}{CN}\). Mà \(\frac{BN}{CN}=\frac{AN}{EN}\)(Hệ quả ĐL Thales)
Nên \(\frac{AM}{BM}=\frac{AN}{EN}\)=> MN // BE (ĐL Thales đảo) (đpcm).
3) Do MN // BE (cmt) nên ^MNO = ^BKO = 450 (2 góc đồng vị).
Mà ^BCO = 450 => ^BKO = ^BCO =450 hay ^BKN = ^OCN => \(\Delta\)BNK ~ \(\Delta\)ONC (g.g)
\(\Rightarrow\frac{BN}{ON}=\frac{KN}{CN}\)hay \(\frac{BN}{KN}=\frac{ON}{CN}\)=> \(\Delta\)BON ~ \(\Delta\)KCN (c.g.c)
=> ^OBN = ^CKN => ^CKN=450 (Vì ^OBN=450)
Vậy ^BKC = ^BKO + ^CKN = 450+450 = 900 => CK vuông góc BE (đpcm).
4) KH // OM, OM vuông góc OK => KH vuông góc OK. Hay KH vuông góc NK
=> ^CKH = ^NKH - ^CKN = 900 - 450 =450 => KC là phân giác ^NKH
Suy ra \(\frac{KN}{KH}=\frac{CN}{CH}=\frac{BN}{BH}\)(ĐL đường phân giác trong tam giác) (1)
Dễ thấy KN là phân giác trong \(\Delta\)BKC => \(\frac{KC}{KB}=\frac{CN}{BN}=\frac{CH}{BH}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}=\frac{BN+CH}{BH}\Leftrightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BN+CH+CN}{BH}\)
\(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BH}{BH}=1\)(đpcm).
a) Gọi E là trung điểm BK
Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)
Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành
Chứng minh AE//NP//MQ (3)
Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác
=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ
=> BQ _|_ NP
b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G
Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\))
=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)
Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)
=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)
Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)
Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)
\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)
Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng h: Đoạn thẳng [C, D] Đoạn thẳng i: Đoạn thẳng [D, A] Đoạn thẳng j: Đoạn thẳng [D, B] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [C, N] Đoạn thẳng r: Đoạn thẳng [O, M] Đoạn thẳng q: Đoạn thẳng [O, E] Đoạn thẳng s: Đoạn thẳng [E, M] Đoạn thẳng t: Đoạn thẳng [B, N] Đoạn thẳng b: Đoạn thẳng [C, H] Đoạn thẳng f_1: Đoạn thẳng [H, M] A = (-2.56, 2.02) A = (-2.56, 2.02) A = (-2.56, 2.02) B = (1.54, 1.98) B = (1.54, 1.98) B = (1.54, 1.98) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t
a) Xét tam giác OEB và tam giác OMC có:
OB = OC (Vì ABCD là hình vuông)
EB = MC (gt)
\(\widehat{OCM}=\widehat{OBE}\left(=45^o\right)\)
\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)
Ta có \(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)
Vậy tam giác OEM vuông cân.
b) Ta luôn có \(\Delta CMN\sim\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\)
Lại có \(CM=BE\), mà AB = BC nên AE = MB
Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)
Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\) , áp dụng định lý Ta-let đảo, ta có EM // BN.
c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)
Suy ra \(\Delta OMC\sim\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)
Xét tam giác OMB và tam giác CMH' có :
\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)
Góc \(\widehat{OMB}=\widehat{CMH'}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta OMB\sim\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)
Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^o+45^o=90^o\)
Hay \(CH'\perp BN\)
Vậy H trùng H' hay O, M , H thẳng hàng.
cái này như là đề hsg toán 8 nghệ an 2013-14 , search trên youtube có
jjjjjjjjjj