Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo cách dựng ta có CE vừa là đường cao, vừa là phân giác trong tam giác CDK
\(\Rightarrow\Delta CDK\) cân tại C
\(\Rightarrow DC=CK\)
Tương tự ta có: \(BM=DB\)
Mặt khác theo định lý phân giác: \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow AB.DC=AC.DB\)
\(\Rightarrow AB.DC-AC.DB=0\)
Dễ dàng chứng minh bài toán quen thuộc: \(AD^2=AB.AC-BD.DC\)
\(\Rightarrow AD^2=\left(AM-DB\right)\left(AK+DC\right)-DB.DC\)
\(=AM.AK+AM.DC-DB.AK-DB.DC-DB.DC\)
\(=AM.AK+DC\left(AM-DB\right)-DB\left(AK+DC\right)\)
\(=AM.AK+DC.AB-DB.AC\)
\(=AM.AK\)
\(\Rightarrow AK=\dfrac{AD^2}{AM}=4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D O E M H N
a) Xét tam giác OEB và tam giác OMC có:
OB = OC (Do ABCD là hình vuông)
EB = MC (gt)
\(\widehat{OCM}=\widehat{OBE}=45^o\)
\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)
Ta có:
\(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)
Vậy tam giác OEM vuông cân.
P/s: 2 câu dưới mai làm cho :v
b) Ta luôn có: \(\Delta CMN~\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\)
Lại có CM = BE, mà AB = BC nên AE = MB
Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)
Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\), áp dụng định lí Ta-let đảo, ta có EM // BN
c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)
\(\Rightarrow\Delta OMC~\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)
Xét tam giác OMB và tam giác CMH' có:
\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)
\(\widehat{OMB}=\widehat{CMH'}\) ( Hai góc đối đỉnh)
\(\Rightarrow\Delta OMB~\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)
Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^0+45^0=90^0\)
Hay \(CH'\perp BN\)
=> H trùng H' => O, M, N thẳng hàng
Xét △AND và △AMB có:
∠NAD = ∠MAB (cùng phụ ∠DAM)
AD=AB (ABCD là hv)
∠ADN = ∠ABM (=90*)
△AND = △AMB (g.c.g)
=>AM=AN mà ∠MAN = 90*=>△AMN vuông cân tại A
Theo định lí Py-ta-go có:
AM2+AN2 = MN2 => 2AM2 = MN2 => \(\dfrac{AM^2}{MN^2}\)=\(\dfrac{1}{2}\) =>\(\dfrac{AM}{MN}\)=\(\dfrac{\sqrt{2}}{2}\)