K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Xét tứ giác AMCP có:

AM//CP(ABCD là hình vuông và AM€AB, CP€DC)

AM=CP (ABCD là hình vuông và AM=\(\dfrac{BC}{2}\), CP=\(\dfrac{CD}{2}\))

=>AMCP là hình bình hành(dấu hiệu nhận biết bình hành)

=>AP//MC (định lí về hình bình hành).

Xét ΔAPD và ΔDNC có:

\(\widehat{D}=\widehat{C}=90°\)

AD=CD (GT)

DP=DC(ABCD là hình vuông và DP=\(\dfrac{CD}{2}\), CN=\(\dfrac{CB}{2}\))

Do đó ΔADP=ΔDNC (c-g-c)

=>\(\widehat{DAP}=\widehat{CDN}\) (2 góc tương ứng)

21 tháng 12 2017

Xét ΔCDG có:

DP=CP (GT)

HP//CG (AP//MC theo CMT và HP€AP, CG€MC)

=>HD=HG (định lí về đường trung bình của tam giác)

Xét ΔDPH có:

\(\widehat{PDH}+\widehat{DPH}\)=90° (\(\widehat{CDN}=\widehat{DAP}\) theo CMT)

=>\(\widehat{DHP}=90°\)

Ta có:\(\widehat{DHP}=\widehat{GHA}=90°\)(đối đỉnh)

\(\widehat{GHA}+\widehat{DHA}=180°\)(2 góc kề bù)

\(\widehat{AHD}=180°-\widehat{AHG}\)

\(\widehat{DHA}=180°-90°=90°\)

Xét ΔADH và ΔAGH có:

(tự làm)