K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Xét tg vuông ADN và tg vuông DCM có
AD=CD (cạnh hình vuông) (1)
Ta có
CD=BC (cạnh hình vuông)
NC=ND; MB=MC (gt)
=> ND=MC=MB=BC/2 (2)
Từ (1) và (2) => tg ADN = tg DCM (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{DAN}=\widehat{CDM}\)
Mà \(\widehat{CDM}+\widehat{ADM}=\widehat{ADC}=90^o\)
\(\Rightarrow\widehat{DAN}+\widehat{ADM}=90^o\)
Xét tg ADH có
\(\widehat{DAN}+\widehat{ADM}=90^o\Rightarrow\widehat{AHD}=90^o\Rightarrow AN\perp DM\)
b/
Xét tg vuông ADN có
\(DN=\dfrac{CD}{2}=\dfrac{AB}{2}=\dfrac{2}{2}=1\)
\(AN=\sqrt{AD^2+DN^2}=\sqrt{2^2+1^2}=\sqrt{5}\) (Pitago)
\(DN^2=NH.AN\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow NH=\dfrac{DN^2}{AN}=\dfrac{1^2}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
\(\Rightarrow AH=AN-NH=\sqrt{5}-\dfrac{\sqrt{5}}{5}=\dfrac{4\sqrt{5}}{5}\)
Xét tg vuông ADN và tg vuông ABM có
AD=AB (cạnh hình vuông)
ND=MB (cmt)
=> tg ADN = tg ABM (Hai tg vuông có 2 cạnh góc vuông bằng nhau)
\(\Rightarrow\widehat{DAN}=\widehat{BAM}=\alpha\)
Ta có \(\widehat{MAN}=\widehat{BAD}-\widehat{DAN}-\widehat{BAM}=\dfrac{\Pi}{2}-2\alpha\)
\(\Rightarrow\cos\widehat{MAN}=\cos\left(\dfrac{\Pi}{2}-2\alpha\right)=\sin2\alpha=2\sin\alpha.\cos\alpha\)
Mà
\(\sin\alpha=\dfrac{DN}{AN}=\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5};\cos\alpha=\dfrac{AD}{AN}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\Rightarrow\cos\widehat{MAN}=2.\dfrac{\sqrt{5}}{5}.\dfrac{2\sqrt{5}}{5}=\dfrac{4}{5}=0,8\)