K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB vuông tại A và ΔIMA vuông tại I có

\(\widehat{AMB}\) chung

Do đó: ΔAMB~ΔIMA

b: Ta có:ABCD là hình vuông

=>AC\(\perp\)BD tại O, O là trung điểm chung của AC và BD

Xét ΔDOC vuông tại O và ΔDCB vuông tại C có

\(\widehat{ODC}\) chung

DO đó: ΔDOC~ΔDCB

=>\(\dfrac{DC}{DB}=\dfrac{OC}{CB}\)

=>\(DC\cdot CB=OC\cdot DB\)

c: Xét ΔHAB có

BI,AO là các đường cao

BI cắt AO tại K

Do đó: K là trực tâm của ΔHAB

=>HK\(\perp\)AB

mà AB\(\perp\)AD

nên HK//AD

d:

M là trung điểm của AD

=>\(AD=2\cdot AM=60\left(cm\right)\)

=>AB=60(cm)

ΔABM vuông tại A

=>\(BM^2=AB^2+AM^2=60^2+30^2=4500\)

=>\(BM=\sqrt{4500}=30\sqrt{5}\left(cm\right)\)

ΔABM vuông tại A

=>\(S_{ABM}=\dfrac{1}{2}\cdot AB\cdot AM=900\left(cm^2\right)\)

Xét ΔBIA vuông tại I và ΔBAM vuông tại A có

\(\widehat{IBA}\) chung

Do đó ΔBIA~ΔBAM

=>\(\dfrac{S_{BIA}}{S_{BAM}}=\left(\dfrac{BA}{BM}\right)^2=\left(\dfrac{60}{30\sqrt{5}}\right)^2=\left(\dfrac{2}{\sqrt{5}}\right)^2=\dfrac{4}{5}\)

=>\(S_{BIA}=\dfrac{4}{5}\cdot S_{BAM}=720\left(cm^2\right)\)

3 tháng 6

a/ Xét tg vuông AMB và tg vuông IMA có

���^=���^ (cùng phụ với ���^ )

=> tg AMB đồng dạng với tg IMA (g.g.g)

b/

Trong hình vuông hai đường chéo vuông góc với nhau

Xét tg vuông OBC và tg vuông CBD có

���^ chung => tg OBC đồng dạng với tg CBD ⇒����=����⇒��.��=��.��(����)

c/ Kéo dài AH cắt CD tại N

Xét tg vuông ABM và tg vuông DAN có

���^=���^ (cùng phụ với ���^ )

AB=AD (cạnh hình vuông)

⇒Δ���=Δ��� (Tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> AM=DN mà ��=��2 Và AD=CD ⇒��=��2=��2⇒��=��

Xét tg ADC có

OA=OC (trong tg vuông hai đường chéo cắt nhau tại trung điểm mỗi đường) => DO là trung tuyến của tg ADC

DN=CN (cmt) => AN là trung tuyến của tg ADC

=> H là trọng tâm của tg ADC ⇒����=13⇒����=12⇒��1=��2=��+��1+2=��3

Mà OD=OB 

https://olm.vn/chu-de/luyen-tap-350597/
8 tháng 5 2021

A B C D M I H K O

a/ Xét tg vuông AMB và tg vuông IMA có

\(\widehat{MAI}=\widehat{ABM}\) (cùng phụ với \(\widehat{AMB}\) )

=> tg AMB đồng dạng với tg IMA (g.g.g)

b/

Trong hình vuông hai đường chéo vuông góc với nhau

Xét tg vuông OBC và tg vuông CBD có

\(\widehat{DBC}\) chung => tg OBC đồng dạng với tg CBD \(\Rightarrow\frac{OC}{DC}=\frac{BC}{BD}\Rightarrow OC.BD=BC.DC\left(dpcm\right)\)

c/ Kéo dài AH cắt CD tại N

Xét tg vuông ABM và tg vuông DAN có

\(\widehat{DAN}=\widehat{ABM}\) (cùng phụ với \(\widehat{AMB}\) )

AB=AD (cạnh hình vuông)

\(\Rightarrow\Delta ABM=\Delta DAN\) (Tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> AM=DN mà \(AM=\frac{AD}{2}\) Và AD=CD \(\Rightarrow DN=\frac{AD}{2}=\frac{CD}{2}\Rightarrow DN=CN\)

Xét tg ADC có

OA=OC (trong tg vuông hai đường chéo cắt nhau tại trung điểm mỗi đường) => DO là trung tuyến của tg ADC

DN=CN (cmt) => AN là trung tuyến của tg ADC

=> H là trọng tâm của tg ADC \(\Rightarrow\frac{HO}{DO}=\frac{1}{3}\Rightarrow\frac{HO}{DH}=\frac{1}{2}\Rightarrow\frac{HO}{1}=\frac{DH}{2}=\frac{HO+DH}{1+2}=\frac{OD}{3}\)

Mà OD=OB \(\Rightarrow\frac{DH}{2}=\frac{HO}{1}=\frac{OB}{3}=\frac{HO+OB}{1+3}=\frac{BH}{4}\Rightarrow DH=\frac{BH}{2}\Rightarrow BH=2.DH\left(dpcm\right)\)

6 tháng 3 2022

 

a/ Xét tg vuông AMB và tg vuông IMA có

ˆMAI=ˆABMMAI^=ABM^ (cùng phụ với ˆAMBAMB^ )

=> tg AMB đồng dạng với tg IMA (g.g.g)

b/

Trong hình vuông hai đường chéo vuông góc với nhau

Xét tg vuông OBC và tg vuông CBD có

ˆDBCDBC^ chung => tg OBC đồng dạng với tg CBD ⇒OCDC=BCBD⇒OC.BD=BC.DC(dpcm)⇒OCDC=BCBD⇒OC.BD=BC.DC(dpcm)

c/ Kéo dài AH cắt CD tại N

Xét tg vuông ABM và tg vuông DAN có

ˆDAN=ˆABMDAN^=ABM^ (cùng phụ với ˆAMBAMB^ )

AB=AD (cạnh hình vuông)

⇒ΔABM=ΔDAN⇒ΔABM=ΔDAN (Tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> AM=DN mà AM=AD2AM=AD2 Và AD=CD ⇒DN=AD2=CD2⇒DN=CN⇒DN=AD2=CD2⇒DN=CN

Xét tg ADC có

OA=OC (trong tg vuông hai đường chéo cắt nhau tại trung điểm mỗi đường) => DO là trung tuyến của tg ADC

DN=CN (cmt) => AN là trung tuyến của tg ADC

=> H là trọng tâm của tg ADC ⇒HODO=13⇒HODH=12⇒HO1=DH2=HO+DH1+2=OD3⇒HODO=13⇒HODH=12⇒HO1=DH2=HO+DH1+2=OD3

Mà OD=OB ⇒DH2=HO1=OB3=HO+OB1+3=BH4⇒DH=BH2⇒BH=2.DH(dpcm)

6 tháng 3 2022

Cảm ơn bạn nka

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có

BA/AD=AD/DC

=>ΔBAD đồng dạng với ΔADC

b: ΔBAD đồng dạng với ΔADC

=>góc BDA=góc ACD

Xét ΔOAD và ΔDAC có

góc ODA=góc DCA

góc A chung

=>ΔOAD đồng dạng với ΔDAC

=>góc AOD=góc ADC=90 độ

=>AC vuông góc BD tại O

c: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81

 

bài nãy dễ mk ms đk cô giáo chữa cho  ^~^

28 tháng 4 2017

Bạn ơi, H ở đâu vậy

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BECb) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?c) CM: Tứ giác ABEF là hình thang când) Điểm C có là trực tâm của tam giác...
Đọc tiếp

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY

  • 1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA

a) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC

b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?

c) CM: Tứ giác ABEF là hình thang cân

d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?

  • 2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC. 

a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau

d) Tính diện tích tam giác ADE theo diện tích tam giác ABC

  • 3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.

a) CM: Tứ giác ABDC là hình thoi

b) CM: Tứ giác AMCE là hình chữ nhật

c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE

d) CM: AK,CI,EM đồng quy

  • 4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.

a) CMR: BM song song với DN

b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.

  • 5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.

a) CM : Tứ giác ABDC là hình thoi

b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành

c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật

d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF

  • 6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.

a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành

b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK

c) CM: ba điểm E,H,K thẳng hàng

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

29 tháng 4 2018

-(a+b)^3=-(1)^3=-1 cả hai đều đúng