K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

Xét (O) có

NQ,MP là các dây

MN=PQ

Do đó: NQ//MP

Xét ΔAMP có NQ//MP

nên \(\dfrac{AN}{NM}=\dfrac{AQ}{QP}\)

mà NM=QP

nên AN=AQ

AN+NM=AM

AQ+QP=AP

mà AN=AQ và NM=PQ

nên AM=AP

OM=OP

AM=AP

Do đó: OA là đường trung trực của PM

=>OA vuông góc với PM

21 tháng 3 2020

Gọi AD là phân giác của tam giác ABC . Do B,C đối xứng nhau qua OT và BM=CN nên M,N đối xứng qua OT

=>\(BC//MN\)

Ta có \(\widehat{FBM}=180^0-\widehat{ABC}-\widehat{CBM}=180^0-\widehat{ABC}-\widehat{CAB}=\widehat{ACB}\)

chú ý góc đồng .vị \(\widehat{ABC}=\widehat{BFM}\)do đó \(\Delta ABC~\Delta MFB\). từ đó ta chú ý \(FM//BC\)nên theo định lý ta-lét ta có

\(\frac{QC}{QF}=\frac{BC}{FM}=\frac{BM}{FM}=\frac{AC}{AB}=\frac{DC}{DB}\)suy ra \(QD//BF\). tương tự \(PD//CE\)

từ đó theo định lý ta-lét .và tính chất  đường phân giác ta có

\(\frac{DQ}{DP}=\frac{DQ}{BF}.\frac{BF}{CE}.\frac{CE}{DP}=\frac{CD}{BC}.\frac{AB}{AC}.\frac{BC}{BD}=\frac{CD}{BD}.\frac{AB}{AC}=1\).vậy DP=DQ (1)

ta lại có \(\widehat{ADQ}=\widehat{DBQ}+\widehat{BDQ}=\widehat{\frac{BAC}{2}+}\widehat{ACB}+\widehat{ABC}.\)

.vậy tương tự \(\widehat{ADP}=\frac{\widehat{BAC}}{2}+\widehat{ACB}+\widehat{ABC}\)do đó

\(\widehat{ADQ}=\widehat{ADP}\left(2\right)\)

Từ (1) zà (2)  suy ra

 \(\Delta ADQ=\Delta ADP\left(c.g.c\right)\)suy ra \(AP=AQ\)(dpcm)