K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2021

Qua A kẻ đường thẳng vuông góc AF cắt đường thẳng CD tại P

Xét hai tam giác vuông ABE và ADP có:

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{D}=90^0\\AB=AD\\\widehat{BAE}=\widehat{DAP}\left(\text{ cùng phụ }\widehat{DAE}\right)\end{matrix}\right.\) 

\(\Rightarrow\Delta ABE=\Delta ADP\Rightarrow AP=AE\)

Áp dụng hệ thức lượng trong tam giác vuông APF:

\(\dfrac{1}{AD^2}=\dfrac{1}{AP^2}+\dfrac{1}{AF^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (đpcm)

NV
19 tháng 9 2021

undefined

4 tháng 7 2017

bạn tự vẽ hình nha

qua A kẻ AI vuông góc với EF cắt BC tại I

áp dụng hệ thức lượng vào tam giác vuông AEI có AB là đường cao \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AI^2}\) (1)

de dang chung minh duoc tam giac vuong ABI= tam giac vuong AFD(cgv-gnk)

\(\Rightarrow AF=AI\) 

thay vao 1 ta co \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\left(DPCM\right)\)

17 tháng 12 2017

qua A vẽ đường thẳng vuông góc với AE cắt CD tại G 
xét tam giác ABE và tam giác ADG có 
góc BAE = góc GAD ( vì cùng phụ với góc DAE ) 
AB=AD ( vì tứ giác ABCD là hình vuông ) 
góc ADG = góc ABE = 90 độ 
=> tam giác ABE = tam giác ADG (g.c.g) 
=> AE=AG => 1/AE^2=1/AG^2 (1) 
mặt khác xét tam giác GAF vuông tại A có đường cao AD nên ta có 
1/AG^2 + 1/AF^2 = 1/AD^2 (2) 
từ (1) và (2) => 1/AD^2 = 1/AE^2 + 1/AF^2 mà AD = AB => 1/AB^2 = 1/AE^2 + 1/AF^2

3 tháng 7 2018

bn ơi coi lại câu hỏi đúng không vậy?!

a: \(\widehat{ADE}+\widehat{EDC}=90^0\)

\(\widehat{KDC}+\widehat{EDC}=90^0\)

Do đó: \(\widehat{ADE}=\widehat{KDC}\)

Xét ΔADE vuông tại A và ΔCDK vuông tại C có

DA=DC

\(\widehat{ADE}=\widehat{KDC}\)

Do đó: ΔADE=ΔCDK

=>DE=DK

Xét ΔDEK có

\(\widehat{EDK}=90^0\)

DE=DK

Do đó: ΔDEK vuông cân tại D

b: Xét ΔDFK vuông tại D có DC là đường cao

nên \(\dfrac{1}{DK^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\)

=>\(\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{1}{DC^2}\) không đổi

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng