K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 1 2018
(hình bạn tự vẽ nha)
Trên tia đối DA lấy I sao cho:
DI=DM=m⇒△CDI=△CDM(c-g-c)⇒CM=CI
Do CN là tia phân giác của góc MCD nên \(\widehat{MCN}\)=\(\widehat{DCN}\)(1)
DO △CDI=△CBM nên\(\widehat{DCI}\)=\(\widehat{BCM}\)(2)
Từ (1) và (2)⇒\(\widehat{MCN}\)+\(\widehat{BCM}\)=\(\widehat{DCN}\)+\(\widehat{DCI}\)⇒\(\widehat{BCN}\)=\(\widehat{NCI}\)
Mặt khác do BC//AD⇒\(\widehat{BCN}\)=\(\widehat{CNI}\)(slt)⇒\(\widehat{NCI}\)=\(\widehat{CNI}\)
⇒△NCI cân tại I⇒ NI = CI ⇒ CI = m + n
Mà CI = MI ⇒ CM = m + n
Trên tia đối tia DA lấy điểm I sao cho \(DI=DM=m\Rightarrow\Delta CDI=\Delta CBM\left(c-g-c\right)\Rightarrow CM=CI\) Do CN là tia phân giác góc MCD nên \(\widehat{MCN}=\widehat{DCN}\) (1)
Do \(\Delta CDI=\Delta CBM\) nên \(\widehat{DCI}=\widehat{BCM}\) (2)
Từ (1), (2) \(\Rightarrow\widehat{MCN}+\widehat{BCM}=\widehat{DCN}+\widehat{DCI}\Rightarrow\widehat{BCN}=\widehat{NCI}\)
Mặt khác do BC // AD \(\Rightarrow\widehat{BCN}=\widehat{CNI}\) (2 góc so le trong) \(\Rightarrow\widehat{NCI}=\widehat{CNI}\Rightarrow\Delta NCI\) là tam giác cân tại \(I=NI=CI\Rightarrow CI=m+n\) Mà \(CI=CM\Rightarrow CM=m+n\)