K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔFEB và ΔFDI có

\(\widehat{FEB}=\widehat{FDI}\)(hai góc so le trong, EB//DI)

\(\widehat{EFB}=\widehat{DFI}\)

Do đó: ΔFEB đồng dạng với ΔFDI

=>\(\dfrac{EB}{DI}=\dfrac{FE}{FD}\left(1\right)\)

Xét ΔAEF và ΔCDF có

\(\widehat{AEF}=\widehat{CDF}\)

\(\widehat{AFE}=\widehat{CFD}\)

Do đó: ΔAEF đồng dạng với ΔCDF

=>\(\dfrac{AE}{CD}=\dfrac{FE}{FD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{EB}{DI}=\dfrac{AE}{CD}\)

mà EB=AE

nên DI=CD

=>D là trung điểm của CI

b: AB//CD

D\(\in\)IC

Do đó: AB//DI

AB=CD

CD=DI

Do đó: AB=DI

Xét tứ giác ABDI có

AB//DI

AB=DI

Do đó: ABDI là hình bình hành

 

13 tháng 12 2023

ý c d đâu ạ

 

17 tháng 12 2020

a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)

=> \(\widehat{ECF}=90^o\)

Xét t/g DEC và t/g BFC có

EC = FC (GT)

\(\widehat{DCE}=\widehat{BCF}=90^o\)

DC = BC (do ABCD là hình vuông)

=> t/g DEC = t/g BFC (c.g.c)

=> DE = BF (2 cạnh t/ứ(

b/ Xét t/g BEH và t/g DEC có

\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)

\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)

 \(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)

=> \(\widehat{BHE}=\widehat{DCB}=90^o\)

=> \(DE\perp BF\)

Xét t/g BDF có

DE ⊥ BF

BC ⊥ DF

DE cắt BC tại E

=> E là trực tâm t/g BDF

=> .... đpcm

c/ Xét t/g CEF có CE = CF ; M là trung điểm EF

=> CM ⊥ EF

=> \(\widehat{KMC}=90^o\)

Tự cm OKMC làhcn

=> OC = KM => AO = KM

Mà AO // KM (cùng vuông góc vs BD)

=> AOMK là hbh

=> OM // AK

10 tháng 9 2018

Bạn xem hướng dẫn ở đường link sau nhé:

Câu hỏi của hoang duong sang - Toán lớp 8 - Học toán với OnlineMath

15 tháng 11 2021

5. Vì tứ giác ABCD là hình bình hành (gt)

=> AD // BC ; AD = BC (tc)

Vì M là trung điểm AD (gt)

     N là trung điểm BC (gt)

     AD = BC (cmt)

=> AM = DM = BN = CN

Vì AD // BC mà M ∈ AD, N ∈ BC

=> MD // BN 

Xét tứ giác MBND có : MD = BN (cmt)

                                     MD // BN (cmt)

=> Tứ giác MBND là hình bình hành (DHNB)

=> BM = DN (tc hình bình hành)

     

15 tháng 11 2021

6. Vì tứ giác ABCD là hình bình hành (gt)

=> AB // CD ; AB = CD (tc)

Vì E là trung điểm AB (gt)

     F là trung điểm CD (gt)

     AB = CD (cmt)

=> AE = BE = DF = DF 

Vì AB // CD mà E ∈ AB, F ∈ CD

=> BE // DF 

Xét tứ giác DEBF có : BE = DF (cmt)

                                     BE // DF (cmt)

=> Tứ giác DEBF là hình bình hành (DHNB)

a: ABCD là hình chữ nhật

=>O là trung điểm chug của AC và BD; AC=BD

=>OM=ON

Xét ΔAON và ΔCOM có

OA=OC

góc AON=góc COM

ON=OM

=>ΔAON=ΔCOM

Xet tứ giác ANCM có

O là trung điểm chung của AC và NM

=>ANCM là hình bình hành

b: Xét ΔDMC có OH//MC

nên DO/OM=DH/HC

=>DH/HC=2/1=2

=>DH=2HC

Xét ΔDOH có

N là trung điểm của DO

NE//OH

=>E là trung điểm của DH

=>DE=EH=1/2DH=HC

=>EH=1/3*DC

Xét ΔMFB và ΔMCD có

góc MFB=góc MCD

góc FMB=góc CMD

=>ΔMFB đồng dạng với ΔMCD

=>FB/CD=MB/MD=1/3

=>FB=1/3CD=EH

 

22 tháng 11 2019

k đúng cho tôi đi

22 tháng 11 2019

( Bạn tự vẽ hình nha )

a) Xét tứ giác AEDF có :

DE // AB

DF // AC

=> AEDF là hình bình hành ( dấu hiệu nhận biết )

Xét hình bình hành AEDF có : 

AD là phân giác của góc BAC

=> EFGD là hình thoi ( dấu hiệu nhận biết )

b) XÉt tứ giác EFGD có :

FG // ED ( AF //ED )

FG = ED ( AF = ED )

=> EFGD là hình bình hành ( dấu hiệu nhận biết )

c) Nối G với I 

+) XÉt tứ giác AIGD có :

F là trung điểm của AG

F là trung điểm của ID

=> AIGD là hình bình hành ( dấu hiệu nhận biết ) 

=> GD // IA hay GD // AK ( tính chất  )

+) Xét tứ giác AKDG có :

GD // AK 

AG // Dk ( AF // ED ) 

=> AKDG là hình bình hành ( dấu hiệu )

+) xtes hinhnf bình hành AKDG có :

AD và GK là 2 đường chéo 

=> AD và GK cắt nhau tại trung điểm mỗi đường 

Mà O là trung điểm của AD ( vì AFDE là hình thoi )

=> O là trung điểm của GK

=> ĐPCM