K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

a) \(\Delta BOM\)đồng dạng với \(\Delta DNO\)vì \(\widehat{MBO}=\widehat{ODN}=45^o\) và \(\widehat{BOM}=\widehat{DNO}\)(cộng với góc DON cùng bằng 135o)

b)\(BM.DN=BO.DO\)

\(BO.DO=AD.BI\)(\(\Delta BOI\)đồng dạng với \(\Delta ADO\))

c) \(\Delta ADN\) đồng dạng với \(\Delta BMI\)\(\Rightarrow\widehat{AND}=\widehat{BIM}\)

Mà \(\widehat{AND}=\widehat{BAN}\)(2 góc so le trong)

Do đó IM // AN (hai góc đồng vị)

24 tháng 6 2018

A B C D O M N E K H

1) Ta có: ^MOB + ^BON = ^MON =900; ^NOC + ^BON = ^BOC = 900

=> ^MOB = ^NOC.

Xét \(\Delta\)OMB và \(\Delta\)ONC: ^MOB = ^NOC (cmt); OB=OC; ^OBM = ^OCN (=450)

=> \(\Delta\)OMB=\(\Delta\)ONC (g.c.g) => OM=ON (2 cạnh tương ứng)

Xét \(\Delta\)MON có: ^MON=900; OM=ON => \(\Delta\)MON vuông cân tại O (đpcm).

2) Ta có: \(\Delta\)OMB=\(\Delta\)ONC (cmt) => BM=CN => AB-BM=BC-CN => AM=BN

Suy ra \(\frac{AM}{BM}=\frac{BN}{CN}\). Mà \(\frac{BN}{CN}=\frac{AN}{EN}\)(Hệ quả ĐL Thales)

Nên \(\frac{AM}{BM}=\frac{AN}{EN}\)=> MN // BE (ĐL Thales đảo) (đpcm).

3) Do MN // BE (cmt) nên ^MNO = ^BKO = 450 (2 góc đồng vị).

Mà ^BCO = 450 => ^BKO = ^BCO =450 hay ^BKN = ^OCN => \(\Delta\)BNK ~ \(\Delta\)ONC (g.g)

\(\Rightarrow\frac{BN}{ON}=\frac{KN}{CN}\)hay \(\frac{BN}{KN}=\frac{ON}{CN}\)=> \(\Delta\)BON ~ \(\Delta\)KCN (c.g.c)

=> ^OBN = ^CKN => ^CKN=450 (Vì ^OBN=450)

Vậy ^BKC = ^BKO + ^CKN = 450+450 = 900 => CK vuông góc BE (đpcm).

4) KH // OM, OM vuông góc OK => KH vuông góc OK. Hay KH vuông góc NK

=> ^CKH = ^NKH - ^CKN = 900 - 450 =450 => KC là phân giác ^NKH

Suy ra \(\frac{KN}{KH}=\frac{CN}{CH}=\frac{BN}{BH}\)(ĐL đường phân giác trong tam giác) (1)

Dễ thấy KN là phân giác trong \(\Delta\)BKC => \(\frac{KC}{KB}=\frac{CN}{BN}=\frac{CH}{BH}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}=\frac{BN+CH}{BH}\Leftrightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BN+CH+CN}{BH}\)

\(\Rightarrow\frac{KC}{KB}+\frac{KN}{KH}+\frac{CN}{BH}=\frac{BH}{BH}=1\)(đpcm).

3 tháng 5 2019

ko ai thèm trả lời

4 tháng 5 2019

con chó nhi này =.=

18 tháng 7 2023

A B C D O M N P Q

a/

Ta có

MN//AB (gt)

AD//BC=> AM//BN

=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có

AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)

b/

Xét hbh ABCD 

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Xét hbh APCQ có

IA=IC  (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng

c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)