Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>AK=DB
mà DB=AC(ABCD là hình chữ nhật)
nên AK=AC
=>ΔAKC cân tại A
b: Xét ΔIAM có IE là phân giác
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)
mà IA=IK
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)
Xét ΔIMK có IF là phân giác
nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)
=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
nên EF//AK
Ta có: EF//AK
AK//BD(AKBD là hình bình hành)
Do đó: EF//BD
a.
Xét tứ giác ADBK có: hai đường chéo AB và DK cắt nhau tại trung điểm M của mỗi đường
\(\Rightarrow ADBK\) là hình bình hành
Do ABCD là hình chữ nhật \(\Rightarrow AB\perp BC\Rightarrow AB\) là đường cao tam giác ACK
Theo cmt, ADBK là hbh \(\Rightarrow BK=AD\)
Mà \(AD=BC\) (ABCD là hcn)
\(\Rightarrow BK=BC\Rightarrow AB\) là trung tuyến tam giác ACK
\(\Rightarrow AB\) vừa là đường cao vừa là trung tuyến nên tam giác ACK cân tại A
b.
Do IE là phân giác, áp dụng định lý phân giác trong tam giác IAM:
\(\dfrac{EM}{EA}=\dfrac{IM}{IA}\) (1)
Do IF là phân giác, áp dụng định lý phân giác trong tam giác IMK:
\(\dfrac{FM}{FK}=\dfrac{IM}{IK}\) (2)
Mà I là trung điểm AK \(\Rightarrow IA=IK\) (3)
(1);(2);(3) \(\Rightarrow\dfrac{EM}{EA}=\dfrac{FM}{FK}\Rightarrow EF||AK\) (định lý Talet đảo)
Theo c/m câu a do ADBK là hình bình hành \(\Rightarrow AK||BD\)
\(\Rightarrow EF||BD\)
a/ Tam giác BMD vuông tại B có BI là trung tuyến nên IB=MD/2=ID lại có CB = CD
=> IC là đường trung trực của đoạn thẳng BD
=> IC qua trung điểm O của BD hay I,O,C thẳng hàng.
Mặt khác: A,O,C thẳng hàng (O là trung điểm AC)
Vậy A,O,I,C thẳng hàng.
b/ Ta có: AFD = CID (cùng bù với góc AID)
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc CID = CED (2 đỉnh kề cùng nhìn cạnh CD dưới góc bằng nhau).
Do đó: góc AFD = CED.
c/ Tự chứng minh tam giác AFD = tam giác CED => DF = DE
EF là trung trực của đoạn thẳng MD => DF = FM và DE = EM
Từ đó suy ra DF=FM=EM=DE => DEMF là hình thoi (1)
=> DI là phân giác của góc EDF.
Tứ giác CDIE nội tiếp (tổng hai góc đối I + C = 180 độ)
=> góc IDE = góc ICE = 45 độ => Góc EDF = 2.IDE = 90 độ (2)
Từ (1) và (2) => DEMF là hình vuông.
Em tham khảo tại đây nhé.
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath