Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)
\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)
Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN
\(\Rightarrow\) Tứ giác BENC nội tiếp
\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)
\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)
\(\Rightarrow NE\perp BM\) tại E
b.
Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)
\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)
\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)
\(\Rightarrow I\) là trực tâm của tam giác BMN
\(\Rightarrow BI\perp MN\)
c.
Gọi H là giao điểm BI và MN
Do E và F cùng nhìn MN dưới 1 góc vuông
\(\Rightarrow\) Tứ giác EFMN nội tiếp
\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)
Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)
\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)
Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)
\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)
\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)
\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)
\(\Rightarrow AM=HM\)
Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)
Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)
\(\Rightarrow AM+CN=MH+NH=MN\)
\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)
Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)
\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)
\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)
Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)
Sửa đề: TANC là hình thang vuông
Xét tứ giác TANC có TN//AC
nên TANC là hình thang
mà góc CAT=90 độ
nên TANC là hình thang vuông
Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao (tính chất tam giác cân)
Suy ra: OC ⊥ AB
a) Xét đường tròn (O) đường kính AB có \(\widehat{ANB}=\widehat{AMB}=90^o\) (góc nội tiếp chắn nửa đường tròn) => AM ⊥ MB; BN ⊥ AN hay AM ⊥ BC; BC ⊥ AC
Xét ΔABC có 2 đường cao AM, BN cắt nhau tại H => H là trực tâm ΔABC => CH ⊥ AB. Mà HK ⊥ AB (gt) => CH ≡ HK hay C, H, K thẳng hàng
b) Gọi giao điểm của NK với đường tròn (O) là D
ΔCNM ~ ΔCBA (c.g.c) => \(\widehat{CNM}=\widehat{ABC}\) (2 góc tương ứng)
ΔANK ~ ΔABC (c.g.c) => \(\widehat{ANK}=\widehat{ABC}\) (2 góc tương ứng)
=> \(\widehat{CNM}=\widehat{ANK}\) => \(90^o-\widehat{CNM}=90^o-\widehat{ANK}\) => \(\widehat{BNM}=\widehat{BND}\)
Xét đường tròn (O) có \(\widehat{BNM}=\widehat{BND}\) => \(\stackrel\frown{BM}=\stackrel\frown{BD}\) => B là điểm chính giữa cung MD
Do B, M cố định => D cố định => NK luôn đi qua điểm D cố định
c) Xét tứ giác HKBM có \(\widehat{HKB}=\widehat{HMB}=90^o\) => Tứ giác HKBM nội tiếp
=> AH.AM = AK.AB
Tương tự ta có BH.BN = BK.AB
=> AH.AM + BH.BN = AK.AB + BK.AB = AB(AK + BK) = AB2
Do AB không đổi nên AH.AM + BH.BN không đổi
d) CMTT câu b ta có \(\widehat{NMH}=\widehat{IMH}\) => MH là phân giác trong tại M của tam giác MNI
=> \(\dfrac{IH}{NH}=\dfrac{IM}{MN}\) (tính chất đường phân giác)
AM ⊥ MB (cmt) => MB là phân giác ngoài tại M của tam giác MNI
=> \(\dfrac{BI}{BN}=\dfrac{IM}{MN}\) (tính chất đường phân giác)
=> \(\dfrac{IH}{NH}=\dfrac{IB}{BN}\left(=\dfrac{IM}{MN}\right)\) => IH.BN = NH.IB