Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) cm tứ giác MNCP là hình bình hành
Xét \(\Delta AHB\)có:
MA = MH ( vì M là trung điểm của AH )
NH = NB ( vì N là trung điểm của BH )
Vậy => MN là đường trung bình của \(\Delta AHB\)
=> MN // AB và MN = 1/2 AB
Mà AB = CD ( vì ABCD là hình chữ nhật )
Vậy => MN // CD và MN = 1/2 CD
mà PC = 1/2 CD ( Vì P là trung điểm của CD )
Vậy => MN // CP và MN = CP
=> MNCP là hình bình hành
b) cm N là trực tâm của \(\Delta MBC\)
Vì MNCP là hình bình hành ( theo cm phần a )
=> MN // CP
Mà \(CP\perp BC\)( vì ABCD là hình chữ nhật )
Vậy => \(MN\perp BC\)
Xét \(\Delta CMB\)có
BH và MN cắt nhau tại M
\(MN\perp CB\left(cmt\right)\)
\(BH\perp MC\left(theogt\right)\)
Vậy => N là trực tâm của \(\Delta MBC\)
c) cm MP vuông góc với MB
Vì N là trực tâm của \(\Delta MBC\)( theo cm phần b )
=> \(CN\perp MB\)
Mà \(CN//MP\)( vì MNCP là hình bình hành )
Vậy => \(MB\perp MP\)
d) gọi I là trung điểm của BP và J là giao điểm của AC và NP
cm 2( MI - IJ ) < NP
Vì \(MB\perp MP\)( theo cm phần c )
=> \(\Delta BMP\)vuông tại M
Mà I là trung điểm của BP
Vậy => MI = IB = IP = 1/2 BP
Xét \(\Delta IJP\)có:
( IP - IJ ) < JP
=> 2(IP - IJ) < 2JP
mà IP = IP ( theo cmt )
2JP = PN ( vì I là trung điểm của PN )
Vậy => 2(MI - IJ) < NP
2 câu trả lời ở đâu vậy bạn??? :V
( có cc a giải cho nhé
Thân )
Mình ko vẽ hình đâu nha
Ta có : Góc MAB = góc ABC ( vì MN // BC)
Góc NAC = góc ACB ( vì MN // BC )
Mà góc ABC= góc ACB ( Tam giác ABC cân )
Nên góc MAB=góc NAC
Xét tam giác ABM và tam giác ACN có
AB=AC ( vì tam giác ABC cân tại A )
Góc MAB= góc NAC ( cmt)
MA= NA ( vì A là tđ cuả MN )
Nên tam giác ABM = ACN
BCMN có BC// Mn và góc BMA=góc CNA ( 2 góc tương ứng)
Nên MNCB là hình thang cân
A B C D M G H O
a, \(\widehat{BMG}=\widehat{AHD}\left(=\widehat{BAH}\right)\)
\(\Delta ADH\infty\Delta GBM\left(g.g\right)\Rightarrow\frac{AD}{GB}=\frac{DH}{BM}\Rightarrow AD.BM=GB.DH\)
Mặt khác, \(AD.BM=a.\frac{a}{2}=\frac{1}{2}a^2\)
\(OB.OD=\left(\frac{a}{\sqrt{2}}\right)^2=\frac{1}{2}a^2\Rightarrow AD.BM=OB.OD=GB.DH\)
\(\Rightarrow\frac{BO}{BG}=\frac{DH}{OD}\Rightarrow BO^2=BG.DH\left(OB=OD\right)\)
b, \(\Delta BOG\infty\Delta DHO\left(c.g.c\right)\Rightarrow\widehat{BGO}=\widehat{DOH}\)
Mà \(\widehat{BOG}+\widehat{BGO}=180^0-\widehat{OBG}=135^0\Rightarrow\widehat{BOG}+\widehat{DOH}=135^0\Rightarrow\widehat{GOH}=45^0\)