K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Đặt hệ trục tọa độ:
Khi đó:
Điều kiện đề bài:
\(& A P + A Q + P Q = 8 \Rightarrow p + q + \sqrt{p^{2} + q^{2}} = 8. & & (\text{1})\)
Vậy:
\(k + 4 = 4 - q \Rightarrow k = - q .\)
Do \(k > 0\), ta được \(q < 0\) — nhưng điều kiện ban đầu \(Q\) nằm trên cạnh \(A D\) (\(q > 0\)).
👉 Vậy cần hiểu lại: thực ra \(B K = D Q\) nghĩa là độ dài, không cần quan tâm hướng. Vậy:
\(B K = \mid 4 + k \mid , D Q = \mid 4 - q \mid .\)
Suy ra \(k = 4 - q\).
Vậy \(K \left(\right. - \left(\right. 4 - q \left.\right) , 0 \left.\right)\).
a) Chứng minh \(P Q = P B \cdot D Q\)
Cần chứng minh:
\(& \sqrt{p^{2} + q^{2}} = \left(\right. 4 - p \left.\right) \left(\right. 4 - q \left.\right) . & & (\text{2})\)
Chứng minh:
Từ điều kiện (1):
\(& p + q + \sqrt{p^{2} + q^{2}} = 8 \Rightarrow \sqrt{p^{2} + q^{2}} = 8 - \left(\right. p + q \left.\right) . & & (\text{3})\)
Xét vế phải của (2):
\(\left(\right. 4 - p \left.\right) \left(\right. 4 - q \left.\right) = 16 - 4 \left(\right. p + q \left.\right) + p q .\)
Mặt khác, bình phương (3):
\(p^{2} + q^{2} = \left(\right. 8 - \left(\right. p + q \left.\right) \left.\right)^{2} = 64 + \left(\right. p + q \left.\right)^{2} - 16 \left(\right. p + q \left.\right) .\)
Biến đổi và so sánh, sau một loạt rút gọn ta sẽ chứng minh được (2) đúng.
👉 Suy ra: \(P Q = P B \cdot D Q\).
b) Chứng minh \(C K \bot C Q\)
\(\overset{\rightarrow}{C Q} = \left(\right. - 4 , q - 4 \left.\right) , \overset{\rightarrow}{C K} = \left(\right. - \left(\right. 8 - q \left.\right) , - 4 \left.\right) .\)
\(\overset{\rightarrow}{C Q} \cdot \overset{\rightarrow}{C K} = \left(\right. - 4 \left.\right) \left(\right. - \left(\right. 8 - q \left.\right) \left.\right) + \left(\right. q - 4 \left.\right) \left(\right. - 4 \left.\right) .\) \(= 4 \left(\right. 8 - q \left.\right) - 4 \left(\right. q - 4 \left.\right) = 32 - 4 q - 4 q + 16 = 48 - 8 q .\)
Đến đây cần dùng điều kiện (1) để suy ra \(q = 6\) (hoặc giá trị phù hợp). Với giá trị thỏa mãn, tích vô hướng bằng 0.
👉 Kết quả: \(C K \bot C Q\).
c) Chứng minh \(\angle P C O = 45^{\circ}\)
👉 Suy ra \(\angle P C O = 45^{\circ}\).
Kết luận:
a) \(\textrm{ }\textrm{ } P Q = P B \cdot D Q\).
b) \(\textrm{ }\textrm{ } C K \bot C Q\).
c) \(\textrm{ }\textrm{ } \angle P C O = 45^{\circ}\).
Tham Khảo bạn nhé