Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta BEC\)Và \(\Delta BFD\) có :
\(\widehat{BEC}\) \(=\)\(\widehat{BFD}\) ( cùng = 900 )
\(\widehat{B}\) chung
\(\Rightarrow\)\(\Delta BEC\) \(~\)\(\Delta BFD\) ( g - g )
Do \(\Delta BEC~\Delta BFD\): \(\Rightarrow\)\(\frac{BE}{BF}\)\(\frac{BC}{B\text{D}}\)
Xét \(\Delta BEF\) Và \(\Delta BC\text{D}\) có :
\(\frac{BE}{BF}\)\(=\) \(\frac{BC}{B\text{D}}\)
\(\widehat{B}\) chung
\(\Rightarrow\) \(\Delta BEF\) \(~\) \(\Delta BC\text{D}\)( c - g - c )
a, Xét tam giác ABC có:
AC2+AB2=242+182=900=302=BC2AC2+AB2=242+182=900=302=BC2⇒⇒ Tam giác ABC vuông tại A
Xét tam giác ABC và MDC có:
DMCˆ=BACˆDMC^=BAC^
CˆC^ là góc chung
⇒⇒ Tam giác ABC ~MDC ( g.g)
b, Vì tam giác ABC~MDC ⇒ABAC=MDMC=34⇒MD=3MC4⇒ABAC=MDMC=34⇒MD=3MC4ACBC=MCDC=45⇒DC=5MC4ACBC=MCDC=45⇒DC=5MC4
Mà:
ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4=7212MC3⇒12MC=72.3=216⇒MC=18cm=7212MC3⇒12MC=72.3=216⇒MC=18cm⇒MD=3.184=13,5cm⇒MD=3.184=13,5cm
⇒DC=5.184=22,5cm
a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2
a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2