K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6cm A B C D E 2cm H 6cm

áp dụng định lý pitago vào tam giac AEC

\(EC=\sqrt{AC^2+AE^2}\)

\(=\sqrt{8^2+6^2}\)

\(=10\)

Vậy \(EC=10\)

10 tháng 3 2020

còn EH bạn?

13 tháng 3 2017

đgdggdgdhdhfhytr

7 tháng 3 2020

* Theo giả thiết ta có: ΔACD và ΔABC đều
Ta có:

ΔABE\(\approx\)CFB(\(\approx\)ΔDFE)

=>AE/BC=AB/CF

<=>AE/AC=AC/CF

Mà ^CAE = ^ACF(=120o)

=>ΔACE\(\approx\)ΔCFA(c.g.c)

* Ta có:

^CAF + ^FAB = ^CAB= 60o

Mà ^FAB = ^CFA(AB//CF,slt)

và ^CFA = ^ACE(ΔACE\(\approx\)ΔCFA)

=> ^CAF + ^ACE = 60o

=> ^AOC = 120o

=> ^EOF = 120(đđ)

Nguồn : Mạng

28 tháng 8 2017

EF giao nhau BC=P

Vì PC và FN cùng vuông góc với DC nên PC song song với FN

\(\Rightarrow\)∠EMP=∠ENF

Mà tứ giác MFNC có 3 góc vuông nên là hình chữ nhật

\(\Rightarrow\)∠CMN=∠MNF

\(\Rightarrow\)∠EMP=∠MNF

Tới đây thôi nha

20 tháng 4 2022

a) -△ABC và △HAC có: \(\widehat{BAC}=\widehat{AHC}=90^0\)\(\widehat{C}\) là góc chung.

\(\Rightarrow\)△ABC∼△HAC (g-g) 

b)\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\Rightarrow AC^2=BC.CH=13.4=52\Rightarrow AC=\sqrt{52}\left(cm\right)\)

c) \(\widehat{AHE}=90^0-\widehat{AHF}=\widehat{CHF}\).

-△AHE và △CHF có: \(\widehat{AHE}=\widehat{CHF}\)\(\widehat{HAE}=\widehat{HCF}\) (△ABC∼△HAC)

\(\Rightarrow\)△AHE∼△CHF (g-g) \(\Rightarrow\dfrac{AH}{CH}=\dfrac{AE}{CF}\Rightarrow AE.CH=AH.FC\).

 

20 tháng 4 2022

d) -Gọi G là giao của AB và HF.

-△GAF và △GHE có: \(\widehat{GAF}=\widehat{GHE}=90^0\)\(\widehat{G}\) là góc chung.

\(\Rightarrow\)△GAF∼△GHE (g-g) \(\Rightarrow\dfrac{GA}{GH}=\dfrac{GF}{GE}\Rightarrow\dfrac{GA}{GF}=\dfrac{GH}{GE}\)

-△GEF và △GHA có: \(\dfrac{GA}{GF}=\dfrac{GH}{GE}\)\(\widehat{G}\) là góc chung.

\(\Rightarrow\)△GEF∼△GHA (c-g-c) \(\Rightarrow\widehat{GFE}=\widehat{GAH}\).

\(\widehat{GAH}=90^0-\widehat{CAH}=\widehat{ACB}\Rightarrow\widehat{GFE}=\widehat{ACB}\).

-△HEF và △ABC có: \(\widehat{EHF}=\widehat{BAC}=90^0;\widehat{HFE}=\widehat{ACB}\).

\(\Rightarrow\)△HEF∼△ABC (g-g) \(\Rightarrow\dfrac{S_{HEF}}{S_{ABC}}=\dfrac{HE}{AB}\Rightarrow S_{HEF}=\dfrac{HE}{AB}.S_{ABC}\)

-Qua H kẻ đg thẳng vuông góc với AB tại E' \(\Rightarrow HE\ge HE'\)

\(\Rightarrow S_{HEF}\ge\dfrac{HE'}{AB}.S_{ABC}\).

-\(S_{HEF}\) có diện tích nhỏ nhất \(\Leftrightarrow E\equiv E'\Leftrightarrow\)E là hình chiếu của H lên AB.