Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\left(ĐK:x>0;x\ne1;x\ne4\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\)
\(=\frac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\)
Cho ΔΔ ABC ⊥⊥ A, lấy các cạnh AB, AC làm cạnh huyền ta dựng về phía ngoài ΔΔ ABC các tam giác vuông ADB, AEC. M là trung điểm của cạnh huyền BC. DM cắt AB ở F và EM cắt AC ở K.
1) CM 3 điểm D,A,E thẳng hàng
2) CM : DM⊥⊥ AB , EM ⊥⊥ AC
3) CM : ΔΔ DME là ΔΔ vuông
4) CM : FK // BC , và FK = 1212 BC.
Mấy bn xem lại đề nha!
A B C D M N E
tu D kẻ DE vuong góc với AB (E thuộc AB)
áp dụng hệ thức lượng vào tam giác vuông EMD
\(\frac{1}{AD^2}=\frac{1}{ED^2}+\frac{1}{DM^2}\)(1)
ma tam giac \(\Delta EAD=\Delta NCD\left(cgv-gnk\right)\)
\(\Rightarrow ED=ND\)
thay vào (1) ta có \(\frac{1}{AD^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)
HAY \(\frac{1}{a^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)
\(\frac{1}{xy}\cdot\sqrt{\frac{x^2y^2}{2}}=\frac{1}{xy}\cdot\frac{xy}{\sqrt{2}}=\frac{1}{\sqrt{2}}\)
\(\frac{3}{a^2-b^2}\cdot\sqrt{\frac{2\left(a+b\right)^2}{9}}=\frac{3}{a^2-b^2}\cdot\frac{\sqrt{2}\left(a+b\right)}{3}=\frac{\sqrt{2}}{a-b}\)
\(\left(x-2y\right)\sqrt{\frac{4}{\left(2y-x\right)^2}}=\left(x-2y\right)\cdot\frac{2}{\left(x-2y\right)}=2\)
câu 1 chưa có điều kiện x y mà lại không cho giá trị tuyệt đối
Từ D kẻ đt vuông góc với DM và cắt BC tại F. Cm tam giác DCF=DAM -->DF=DM.Áp dụng ht \(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\)vào tgDFN là được nhé!!
\(N=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c}\)
\(\ge a-\frac{ab^2c}{2b\sqrt{c}}=a-\frac{ab\sqrt{c}}{2}=a-\frac{b\sqrt{ac}\sqrt{a}}{2}\)
\(\ge a-\frac{b\left(ac+c\right)}{4}\).Suy ra \(\frac{a}{1+b^2c}\ge a-\frac{1}{4}\cdot\left(ab+abc\right)\)
Tương tự ta có:
\(\frac{b}{a+c^2d}\ge b-\frac{1}{4}\left(bc+bcd\right)\)
\(\frac{c}{1+d^2a}\ge c-\frac{1}{4}\left(cd+cda\right)\)
\(\frac{d}{1+a^2b}\ge d-\frac{1}{4}\left(da+dab\right)\)
Do đó: \(S=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
\(\ge a+b+c+d-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)
\(=4-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)
Ta có:
\(ab+bc+cd+da\le\frac{1}{4}\left(a+b+c+d\right)^2=4\)
\(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)
nên \(S\ge4-\frac{1}{4}\cdot\left(4+4\right)=2\)(Đpcm)
Dấu = khi \(a=b=c=d=1\)
\(\frac{4}{\sqrt{5}-1}=\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{4\left(\sqrt{5}+1\right)}{4}=\sqrt{5}+1\)
Chúc bạn học tốt .
=\(\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)=\(\frac{4\left(\sqrt{5}+1\right)}{5-1}\)=\(\sqrt{5}+1\)
A B C D M N H
Kẻ DH vuông góc với DN tại D
Xét ΔADM và ΔCDH có:
^DAM=^DCH=90(gt)
AD=DC(gt)
^ADM=^CDH (cùng phụ với ^NDC)
=>ΔADM=ΔCDH(g.c.g)
=>DM=DH
Xét ΔDHN vuông tại D(gt).Có:
\(\frac{1}{DH^2}+\frac{1}{DN^2}=\frac{1}{DC^2}=\frac{1}{a^2}\)
hay \(\frac{1}{DM^2}+\frac{1}{DN^2}=\frac{1}{a^2}\)