K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

A B C D M N H

Kẻ DH vuông góc với DN tại D

Xét ΔADM và ΔCDH có:

  ^DAM=^DCH=90(gt)

   AD=DC(gt)

  ^ADM=^CDH (cùng phụ với ^NDC)

=>ΔADM=ΔCDH(g.c.g)

=>DM=DH

Xét ΔDHN vuông tại D(gt).Có:

 \(\frac{1}{DH^2}+\frac{1}{DN^2}=\frac{1}{DC^2}=\frac{1}{a^2}\)

hay \(\frac{1}{DM^2}+\frac{1}{DN^2}=\frac{1}{a^2}\)

 

 

21 tháng 12 2016

\(A=\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\left(ĐK:x>0;x\ne1;x\ne4\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\)

\(=\frac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\)

Thầy cô sẵn tiện giúp em luôn nha!

Cho ΔΔ ABC  A, lấy các cạnh AB, AC làm cạnh huyền ta dựng về phía ngoài ΔΔ ABC các tam giác vuông ADB, AEC. M là trung điểm của cạnh huyền BC. DM cắt AB ở F và EM cắt AC ở K.

1) CM 3 điểm D,A,E thẳng hàng

2) CM : DM AB , EM  AC

3) CM : ΔΔ  DME là ΔΔ vuông

 

4) CM : FK // BC , và FK = 1212 BC.

 Mấy bn xem lại đề nha!

9 tháng 9 2017

A B C D M N E

tu D kẻ DE vuong góc với AB (E thuộc AB)

áp dụng hệ thức lượng vào tam giác vuông EMD 

\(\frac{1}{AD^2}=\frac{1}{ED^2}+\frac{1}{DM^2}\)(1)

ma tam giac \(\Delta EAD=\Delta NCD\left(cgv-gnk\right)\)

\(\Rightarrow ED=ND\)

thay vào (1) ta có \(\frac{1}{AD^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)

       HAY \(\frac{1}{a^2}=\frac{1}{DM^2}+\frac{1}{DN^2}\)

27 tháng 9 2016

\(\frac{1}{xy}\cdot\sqrt{\frac{x^2y^2}{2}}=\frac{1}{xy}\cdot\frac{xy}{\sqrt{2}}=\frac{1}{\sqrt{2}}\)

\(\frac{3}{a^2-b^2}\cdot\sqrt{\frac{2\left(a+b\right)^2}{9}}=\frac{3}{a^2-b^2}\cdot\frac{\sqrt{2}\left(a+b\right)}{3}=\frac{\sqrt{2}}{a-b}\)

\(\left(x-2y\right)\sqrt{\frac{4}{\left(2y-x\right)^2}}=\left(x-2y\right)\cdot\frac{2}{\left(x-2y\right)}=2\)

 

30 tháng 9 2016

câu 1 chưa có điều kiện x y mà lại không cho giá trị tuyệt đối 

 

16 tháng 10 2015

Từ D kẻ đt vuông góc với DM và cắt BC tại F. Cm tam giác DCF=DAM -->DF=DM.Áp dụng ht \(\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}\)vào tgDFN là được nhé!!

6 tháng 9 2016

\(N=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)

Áp dụng BĐT Cauchy ta có:

\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c}\)

\(\ge a-\frac{ab^2c}{2b\sqrt{c}}=a-\frac{ab\sqrt{c}}{2}=a-\frac{b\sqrt{ac}\sqrt{a}}{2}\)

\(\ge a-\frac{b\left(ac+c\right)}{4}\).Suy ra \(\frac{a}{1+b^2c}\ge a-\frac{1}{4}\cdot\left(ab+abc\right)\)

Tương tự ta có:

\(\frac{b}{a+c^2d}\ge b-\frac{1}{4}\left(bc+bcd\right)\)

\(\frac{c}{1+d^2a}\ge c-\frac{1}{4}\left(cd+cda\right)\)

\(\frac{d}{1+a^2b}\ge d-\frac{1}{4}\left(da+dab\right)\)

Do đó: \(S=\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)

\(\ge a+b+c+d-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)

\(=4-\frac{1}{4}\left(ab+bc+cd+da+abc+bcd+cda+dab\right)\)

Ta có:

\(ab+bc+cd+da\le\frac{1}{4}\left(a+b+c+d\right)^2=4\)

\(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)

nên \(S\ge4-\frac{1}{4}\cdot\left(4+4\right)=2\)(Đpcm)

Dấu = khi \(a=b=c=d=1\)

 

 

 

7 tháng 9 2016

tick đê =))

13 tháng 10 2016

\(\frac{4}{\sqrt{5}-1}=\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\frac{4\left(\sqrt{5}+1\right)}{4}=\sqrt{5}+1\)

Chúc bạn học tốt .hihi

13 tháng 10 2016

=\(\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)=\(\frac{4\left(\sqrt{5}+1\right)}{5-1}\)=\(\sqrt{5}+1\)