Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\hat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ABDC là hình chữ nhật
=>AB//CD và AB=CD
AB//CD
=>BE//CD
AB=CD
AB=BE
Do đó: CD=BE
Xét tứ giác BEDC có
BE//DC
BE=DC
Do đó: BEDC là hình bình hành
c: Ta có: KB+KD=BD
=>BD=2BK+BK=3BK
=>\(\frac{DK}{DB}=\frac{2BK}{3BK}=\frac23\)
Xét ΔDAE có
DB là đường trung tuyến
\(DK=\frac23DB\)
Do đó: K là trọng tâm của ΔDAE
Xét ΔDAE có
K là trọng tâm
M là trung điểm của AD
Do đó: EK đi qua M
=>EK,AD,BC đồng quy tại M

a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\hat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ABDC là hình chữ nhật
=>CD//AB và CD=AB
CD//AB
=>CD//BE
CD=AB
AB=BE
Do đó: CD=BE
Xét tứ giác CDEB có
CD//EB
CD=EB
Do đó: CDEB là hình bình hành
c: Xét ΔDAB có
DB,EM là các đường trung tuyến
DB cắt EM tại K
Do đó: K là trọng tâm của ΔDAB
=>\(EK=\frac23EM\)
=>EK=2KM
d: ΔAHD vuông tại H
mà HM là đường trung tuyến
nên \(HM=\frac{AD}{2}\)
=>AD=2HM
e: Ta có: ABDC là hình chữ nhật
=>AD=BC
mà AD=2HM
nên BC=2HM
Xét ΔHBC có
HM là đường trung tuyến
\(HM=\frac{BC}{2}\)
Do đó: ΔHBC vuông tại H

Ta có: CB=CE
=>\(\hat{CBE}=\hat{CEB}\)
mà \(\hat{CBE}=\hat{BCD}\) (hai góc so le trong, BE//CD)
và \(\hat{BCD}=\hat{ADC}\) (ABCD là hình thang cân)
nên \(\hat{AEC}=\hat{ADC}\) (2)
Ta có: AE//DC
=>\(\hat{AEC}+\hat{ECD}=180^0\) (hai góc trong cùng phía)(1)
Ta có: AB//CD
=>\(\hat{ADC}+\hat{DAE}=180^0\) (hai góc trong cùng phía)(3)
Từ (1),(2),(3) suy ra \(\hat{ECD}=\hat{EAD}\)
Xét tứ giác AECD có
\(\hat{AEC}=\hat{ADC}\)
\(\hat{DAE}=\hat{DCE}\)
Do đó: AECD là hình bình hành
ta có : góc ABD=góc BDC (2 góc so le trong của 2 đt ab//cd)
góc DBC=góc ABD (BD là đường chéo của hình thang cân ABCD)
suy ra góc BDC=góc DBC
suy ra tam giác BCD cân tại C
suy ra DC=BC
mà BC=AE (gt)
suy ra DC =AE
Ta có góc EAD = góc ADC (so le trong của 2 đt EB//CD)
Tứ giác AECD có DC=AE ; góc EAD= góc ADC
suy ra AECD là hình bình hành (đpcm)
Xét △ ANK và △ BKL :
AN = BK (gt)
∠ A = ∠ B = 90 0
AK = BL (vì AB = BC, BK = CL)
Do đó △ ANK = △ BKL (c.g.c)
⇒ NK = KL (1)
Xét △ BKL và △ CLM:
BK = CL (gt)
∠ B = ∠ C = 90 0
BL = CM (vì BC = CD, CL = DM)
Do đó: △ BKL = △ CLM (c.g.c)
⇒ KL = LM (2)
Xét △ CLM và △ DMN :
CL = DM (gt)
∠ C = ∠ D = 90 0
CM = DN (vì CD = DA, DM = AN)
Do đó: △ CLM = △ DMN (c.g.c)
⇒ LM = MN (3)
Từ (1), (2) và (3) ⇒ NK = KL = LM = MN
Tứ giác MNKL là hình thoi
△ ANK = △ BKL ⇒ ∠ (ANK) = ∠ (BKL)
Trong tam giác ANK có A là góc vuông ⇒ ∠ (ANK) + ∠ (AKN) = 90 0
⇒ ∠ (BKL) + ∠ (AKN) = 90 0 hay ∠ (NKL) = 90 0
Vậy tứ giác MNKL là hình vuông.