K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2022

Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}y-2=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{1}{2};2\right)\)

\(S_{CDE}=\dfrac{1}{2}S_{ABCD}=9\Rightarrow S_{ABCD}=18\)

\(\Rightarrow S_{ADE}=\dfrac{1}{2}AD.AE=\dfrac{1}{8}AD.AB=\dfrac{1}{8}S_{ABCD}=\dfrac{9}{4}\Rightarrow AD.AE=\dfrac{9}{2}\)

Gọi \(A\left(a;2\right)\) và \(D\left(d;2d+3\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(a+\dfrac{1}{2};0\right)\\\overrightarrow{AD}=\left(d-a;2d+1\right)\end{matrix}\right.\)

\(AB\perp AD\Rightarrow\overrightarrow{EA}.\overrightarrow{AD}=0\Rightarrow\left(a+\dfrac{1}{2}\right)\left(d-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-\dfrac{1}{2}\left(loại\right)\\a=d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AE=\left|d+\dfrac{1}{2}\right|\\AD=\left|2d+1\right|\end{matrix}\right.\)

\(AE.AD=\left|\left(d+\dfrac{1}{2}\right)\left(2d+1\right)\right|=\dfrac{9}{2}\)

\(\Leftrightarrow\left(2d+1\right)^2=9\Rightarrow\left[{}\begin{matrix}d=1\left(loại\right)\\d=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-2;2\right)\\D\left(-2;-1\right)\end{matrix}\right.\)

\(\overrightarrow{AB}=4\overrightarrow{AE}\Rightarrow\)tọa độ B

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ C

5 tháng 6 2016

C ƠI HÌNH NHƯ BÀI 1 SAI ĐỀ BÀI R

5 tháng 5 2023

Để tìm tọa độ đỉnh B và điểm M, ta có thể sử dụng các thông tin sau:

M là trung điểm của BC, nghĩa là tọa độ của M bằng trung bình cộng của tọa độ của B và C.N là trung điểm của CD, nghĩa là tọa độ của C là (2, -2).Do ABCD là hình vuông nên độ dài các cạnh bằng nhau, suy ra AB = CD = BC = AD.Vì M có hoành độ nguyên, nên tọa độ của B và C cũng phải có hoành độ nguyên.

Từ đó, ta có thể tìm tọa độ của B như sau:

Đặt tọa độ của B là (x, y).Do AB = BC, suy ra x - 1 = 1 - y, hay x + y = 2.Do AB = CD = 2, suy ra tọa độ của A là (x - 1, y + 1) và tọa độ của D là (x + 1, y - 1).Vì đường thẳng AM có phương trình x+2y-2=0, nên điểm A nằm trên đường thẳng đó, tức là x - 2y + 2 = 0.Từ hai phương trình trên, ta giải hệ: x + y = 2 x - 2y + 2 = 0Giải hệ này ta được x = 2 và y = 0, suy ra tọa độ của B là (2, 0).

Tiếp theo, ta sẽ tìm tọa độ của M:

Đặt tọa độ của M là (p, q).Do M là trung điểm của BC, suy ra p = (x + r)/2 và q = (y + s)/2, với r, s lần lượt là hoành độ và tung độ của C.Ta đã biết tọa độ của C là (2, -2), suy ra r = 2 và s = -4.Từ AM có phương trình x+2y-2=0, suy ra p + 2q - 2 = 0.Với hoành độ nguyên của M, ta có thể thử các giá trị p = 1, 2, 3, ... và tính q tương ứng.Khi p = 2, ta có p + 2q - 2 = 2q = 2, suy ra q = 1.Vậy tọa độ của M là (2, 1).<đủ chi tiết luôn nhó>
25 tháng 3 2021

Phương trình đường thẳng AM: \(ax+by-\dfrac{11}{2}a-\dfrac{1}{2}b=0\left(a^2+b^2\ne0\right)\)

Giả sử cạnh hình vuông có độ dài là \(a\)

\(AM^2=\dfrac{5}{4}a^2;AN^2=\dfrac{10}{9}a^2;MN^2=\dfrac{25}{36}a^2\)

Theo định lí cos: \(cosMAN=\dfrac{AM^2+AN^2-MN^2}{2.AM.AN}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\dfrac{\left|2a-b\right|}{\sqrt{5\left(a^2+b^2\right)}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left(a-3b\right)\left(3a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\3a=-b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AM:3x+y-17=0\\AM:x-3y-4=0\end{matrix}\right.\)

TH1: \(AM:3x+y-17=0\Rightarrow A:\left\{{}\begin{matrix}3x+y-17=0\\2x-y-3=0\end{matrix}\right.\Rightarrow A=\left(4;5\right)\)

TH2: \(AM:x-3y-4=0\Rightarrow A:\left\{{}\begin{matrix}x-3y-4=0\\2x-y-3=0\end{matrix}\right.\Rightarrow A=\left(1;-1\right)\)

8 tháng 4 2016

\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)

(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)

d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)

Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến 

Suy ra \(\left(Q\right):x-2z+12=0\)