K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

A B C D E F M x a-x x a-x a a

Gọi AE = x thì BE = a-x

Ta có : \(S_{DEF}=S_{ABCD}-S_{ADE}-S_{BEF}-S_{DEC}\)

\(=a^2-\frac{ax}{2}-\frac{x\left(a-x\right)}{2}-\frac{a\left(a-x\right)}{2}\)

\(=\frac{a^2-ax+x^2}{2}=\frac{1}{2}\left[\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{4}\right]\)

\(=\frac{1}{2}\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{8}\ge\frac{3a^2}{8}\)

Dấu "=" xảy ra khi \(x=\frac{a}{2}\Rightarrow\hept{\begin{cases}AE=EB\\BF=FC\end{cases}\Rightarrow}\)M là trung điểm của AC hay M là giao điểm của AC và BD thì diện tích tam giác DEF đạt giá trị nhỏ nhất bằng \(\frac{3a^2}{8}\)

19 tháng 10 2016

cảm ơn bạn

9 tháng 3 2020

bn vào câu hỏi tuong tự có đó

9 tháng 3 2020

cảm ơn bạn

có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem