\(\overrightarrow{AB}.\o...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2020

a, \(AC=\dfrac{AB}{sin45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)

\(\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos\widehat{BAC}=a.a\sqrt{2}.cos45^o=a^2\)

b, \(\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{BD}+\overrightarrow{BC}\right)=\overrightarrow{AC}\left(\overrightarrow{BD}+\overrightarrow{BC}\right)\)

\(=\overrightarrow{AC}.\overrightarrow{BD}+\overrightarrow{AC}.\overrightarrow{BC}\)

\(=AC.BD.cos90^o+AC.AD.cos45^o\)

\(=a\sqrt{2}.a\sqrt{2}.0+a\sqrt{2}.a.\dfrac{\sqrt{2}}{2}=a^2\)

c, \(\overrightarrow{AB}.\overrightarrow{BD}=AB.BD.cos135^o=-a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=-a^2\)

d, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\left(2\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{BC}.\left(\overrightarrow{AD}+\overrightarrow{BD}\right)\)

\(=\overrightarrow{BC}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BD}\)

\(=AD^2+BC.BD.cos45^o\)

\(=a^2+a.a\sqrt{2}.\dfrac{\sqrt{2}}{2}=2a^2\)

e, \(\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}\right)\)

\(=\left(\overrightarrow{AC}+\overrightarrow{AC}\right)\left(\overrightarrow{DB}+\overrightarrow{DB}\right)\)

\(=4.\overrightarrow{AC}.\overrightarrow{DB}=4.AC.DB.cos90^o=0\)

10 tháng 10 2019

\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=5\)

\(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}+\overrightarrow{AD}\right|=\left|2\overrightarrow{AD}\right|=2AD=8\)

Kẻ hbh ABFC

Dễ tính được ACD=530

nên ACB=37=CBF

Theo định lý cos ta tính được AF

bạn tự tính nhá mk ko có mt

NV
11 tháng 10 2020

\(BC=AD=\sqrt{AC^2-AB^2}=2a\)

a/ \(T=\left|3\overrightarrow{AB}-4\overrightarrow{BC}\right|\Rightarrow T^2=9AB^2+16BC^2-24\overrightarrow{AB}.\overrightarrow{BC}\)

\(=9a^2+64a^2=73a^2\Rightarrow T=a\sqrt{73}\)

b/ \(T^2=4AB^2+9BC^2+12.\overrightarrow{BA}.\overrightarrow{BC}=4AB^2+9BC^2=40a^2\)

\(\Rightarrow T=2a\sqrt{10}\)

c/ \(T=\left|\overrightarrow{AD}+3\overrightarrow{BC}\right|=\left|\overrightarrow{AD}+3\overrightarrow{AD}\right|=\left|4\overrightarrow{AD}\right|=4AD=8a\)

d/ \(T=\left|2\overrightarrow{DC}-3\overrightarrow{DC}\right|=\left|-\overrightarrow{DC}\right|=CD=AB=a\)

21 tháng 7 2019
https://i.imgur.com/LbHpR0f.jpg
16 tháng 7 2019
https://i.imgur.com/qaJRJlN.jpg
16 tháng 7 2019
https://i.imgur.com/vqxWmou.jpg

Bài 2:

\(\left|\overrightarrow{BC}+\overrightarrow{BA}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)

27 tháng 2 2016

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

NV
26 tháng 10 2020

Gọi O là tâm hình vuông

\(\left|\overrightarrow{AC}-\overrightarrow{BD}\right|=\left|2\overrightarrow{OC}-2\overrightarrow{OD}\right|=2\left|\overrightarrow{OC}+\overrightarrow{DO}\right|=2\left|\overrightarrow{DC}\right|=2a\)

\(\left|\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{DC}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CB}\right|\)

\(=\left|\overrightarrow{AC}+\overrightarrow{DB}\right|=\left|\overrightarrow{AC}-\overrightarrow{BD}\right|=2a\) (như kết quả câu trên)