K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

Gọi M(x, y)

⇒ MA2 = (x – 1)2 + (y – 2)2

MB2 = (x + 3)2 + (y – 1)2

MC2 = (x – 4)2 + (y + 2)2

MA2 + MB2 = MC2

⇔ (x – 1)2 + (y – 2)2 + (x + 3)2 + (y – 1)2 = (x – 4)2 + (y + 2)2

⇔ [(x – 1)2 + (x + 3)2 – (x – 4)2] + [(y – 2)2 + (y – 1)2 – (y + 2)2] = 0

⇔ (x2 – 2x +1 +x2 + 6x + 9 – x2 + 8x -16) + (y2 – 4y + 4 + y2 – 2y + 1 – y2 – 4y – 4) = 0

⇔ (x2 + 12x – 6) + (y2 – 10y + 1) = 0

⇔ (x2 + 12x – 6 +42) + (y2 – 10y + 1+ 24) = 42 +24

⇔ (x2 + 12x + 36) + (y2 – 10y + 25) = 66

⇔ (x + 6)2 + (y – 5)2 = 66.

Vậy tập hợp các điểm M là đường tròn tâm I(–6; 5), bán kính R = √66.

2 tháng 3 2021

a, Gọi I là trọng tâm của ΔABC

⇒ \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

MA2 + MB2 + MC2 = k2

⇔ 3MI2 + 2\(\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+AB^2+AC^2+BC^2\) = k2

⇔ 3MI2 = k2 - 1014

⇔ MI = \(\sqrt{\dfrac{k-1014}{3}}\) = const

Vậy M thuộc \(\left(I;\sqrt{\dfrac{k-1014}{3}}\right)\)

NV
11 tháng 1 2021

Gọi O là tâm hình vuông \(\Rightarrow OA=OB=OC=OD\)

\(\left(\overrightarrow{MO}+\overrightarrow{OA}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OC}\right)^2=3\left(\overrightarrow{MO}+\overrightarrow{OD}\right)^2\)

\(\Leftrightarrow OA^2+OB^2+OC^2+2\overrightarrow{MO}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)=3OD^2+6\overrightarrow{MO}.\overrightarrow{OD}\)

\(\Leftrightarrow\overrightarrow{MO}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-3\overrightarrow{OD}\right)=0\)

\(\Leftrightarrow\overrightarrow{MO}\left(\overrightarrow{OB}-3\overrightarrow{OD}\right)=0\)

\(\Leftrightarrow\overrightarrow{MO}.\overrightarrow{OB}=0\)

Quỹ tích M là đường thẳng AC

27 tháng 6 2017

a) Gọi O là tâm đường tròn ngoại tiếp. Do tam giác ABC là tam giác đều nên O đồng thời là trọng tâm tam giác đều ABC.

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Lại có:

+ O là trọng tâm tam giác nên Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

+ Bán kính đường tròn ngoại tiếp tam giác:

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Ta có: NA2 + NB2 + NC2 ngắn nhất

⇔ NO2 ngắn nhất vì R không đổi

⇔ NO ngắn nhất

⇔ N là hình chiếu của O trên d.

NV
17 tháng 12 2020

Do M thuộc Oy, gọi tọa độ M có dạng \(M\left(0;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1;-1-m\right)\\\overrightarrow{MB}=\left(3;2-m\right)\end{matrix}\right.\)

\(\Rightarrow T=MA^2+MB^2=1+\left(-1-m\right)^2+9+\left(2-m\right)^2\)

\(T=2m^2-2m+15=2\left(m-\dfrac{1}{2}\right)^2+\dfrac{29}{2}\ge\dfrac{29}{2}\)

\(T_{min}=\dfrac{29}{2}\) khi \(m=\dfrac{1}{2}\Leftrightarrow M\left(0;\dfrac{1}{2}\right)\)

10 tháng 12 2020

M thuộc trục tung nên tung độ y bằng 0

\(\Rightarrow M\left(a;0\right)\)

Ta có P= \(MA^2+MB^2=\sqrt{\left(1-a\right)^2+\left(-1\right)^2}^2+\sqrt{\left(3-a\right)^2+2^2}^2=2a^2-8a+15=2\left(a-2\right)^2+7\ge7\)

\(\Rightarrow\) MinP=7 đạt được khi a=2

khi đó M(2;0)

21 tháng 11 2022

M thuộc trục tung thì M có toạ độ M(0,a) chứ 

 

13 tháng 4 2017

Ta có M ∈ O y  nên M(0; m) và  M A → = 1 ; −   1 − m M B → = 3 ; 2 − m .

Khi đó  M A 2 + M B 2 = M A → 2 + M B → 2 = 1 2 + − 1 − m 2 + 3 2 + 2 − m 2 = 2 m 2 − 2 m + 15.

= 2 m − 1 2 2 + 29 2 ≥ 29 2 ;    ∀ m ∈ ℝ .

Suy ra M A 2 + M B 2 min = 29 2 .  

Dấu =  xảy ra khi và chỉ khi m = 1 2    ⇒    M 0 ; 1 2 .  

Chọn C.

31 tháng 12 2020

- Gọi I là điểm thỏa mãn : \(\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)

-> I là trung điểm của BC .

Có : \(\overrightarrow{MB}.\overrightarrow{MC}=\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\left(\overrightarrow{MI}+\overrightarrow{IC}\right)=\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\left(\overrightarrow{MI}-\overrightarrow{IB}\right)\)

\(=MI^2-IB^2=MI^2-\left(2a\right)^2=MI^2-4a^2=5a^2\)

\(\Rightarrow MI^2=9a^2\)

\(\Rightarrow MI=3a\)

Vậy quỹ tích điểm M là đường tròn tâm I bán kính 3a .