Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Lớp 8 chưa học tứ giác nội tiếp nên có thể CM như sau:
Xét tam giác $KAB$ và $KCH$ có:
$\widehat{K}$ chung
$\widehat{KBA}=\widehat{KHC}=90^0$
$\Rightarrow \triangle KAB\sim \triangle KCH$ (g.g)
$\Rightarrow \frac{KA}{KC}=\frac{KB}{KH}\Rightarrow KA.KH=KB.KC$
Xét tam giác $KAC$ có $AB,CH$ là 2 đường cao giao nhau tại $M$ nên $M$ là trực tâm tam giác $KAC$
$\Rightarrow KM\perp AC$. Mà $AC\perp BD$ nên $KM\parallel BD$.
2.
$OE\parallel DC$ nên theo định lý Talet:
$\frac{OF}{FC}=\frac{OE}{DC}$
Mà $OE=OC$ (như bạn Phan Linh Nhi đã cm) nên $\frac{OF}{FC}=\frac{OC}{DC}=\frac{\sqrt{2}}{2}$ (do $ODC$ là tam giác vuông cân tại $O$)
a) Xét tam giác OEB và tam giác OMC có:
góc OBE = góc OCM (t/c đường chéo hv)
OC = OB ( nt)
EB = MC (gt)
Vậy tam giác OEB = tam giác OMC (c-g-c)
=> EO = MO (1) và góc EOB = góc MOC
mà góc BOC = góc BOM + góc MOC = 90 độ
=> góc EOM = góc EOB + góc BOM = 90 độ (2)
Từ (1),(2) => tam giác OEM vuông cân
b) Ta có: AB//CN (N thuộc DC)
ÁP dụng định lí Ta - let tá được:
AM/MN= BM/MC mà BM=AE và MC=BE (gt)
=> AM/MN = AE/BE
=> EM//BN (đ/l Ta - let đảo)
Phần còn lại mình còn đang suy nghĩ.
https://diendan.hocmai.vn/threads/hinh-hoc-lop-8.422552/
Xét ABM và NCM có
^ABM=^NCM=900
^AMB=^MNC(đối đỉnh)
=>ABM đồng dạng NCM (g-g)
=> CM/BM=MN/AM
=> CM/BC=MN/AN
=> BE/AB=MN/AN
=> ME // BN (định líTTalet đảo)
Câu c để pham trung thanh làm
a. AE = AF:
Δ ABE = Δ ADF vì:
AB = AD ( cạnh hình vuông)
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^)
=> AE = AF
b. Tứ gaíc EGFK là hình thoi
EG // AB và AB // FK => EG // FK (*)
=> \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong)
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF
theo giả thiết: IE = IF (2)
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**)
(*) và (**) => EGFK là hình bình hành
vì AI là trung trực của EF => EG = FG
vậy hình bình hành EGFK là hình thoi.
c. tam giác FIK đồng dạng tam giác FCE
Δ FIK ~ Δ FEC vì:
\(\widehat{F}\)chung
\(\widehat{KIF}=\widehat{ECF}\) = 1v
d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi
gọi cạnh hình vuông là a, ta có:
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi
MỌI NGƯỜI GIÚP MÌNH CÂU b VỚI Ạ!
qua đỉnh A hình bình hành ABCD vẽ đường thẳng d cắt BD, BC, CD lần lượt tại E, F, G. a. chứng minh rằng EA/EF = EG/EA b. xác định vị trí của đường thẳng d để tích EF.EG nhỏ nhất
a) Câu hỏi của Nguyễn Phương Thảo - Toán lớp 9 - Học toán với OnlineMath
a)Xét tứ giác BHCD có:
∠DCB=90
∠DHB=90(DH⊥BH)
⇒∠DCB=∠DHB=90
⇒Tứ giác BHCD là tứ giác nội tiếp đường tròn có tâm là trung điểm đoạn BD
b)DH là đường cao thứ nhất
BC là đường cao thứ hai
⇒M là trực tâm
⇒KM vuông góc DB
c)Xét ΔKCB và ΔKHD, có::
∠K: chung
∠H=∠C=90
⇒ΔKCB đồng dạng ΔKHD(g.g)
⇒KC/KH=KB/KD
⇒KC×KD=KH×KB