\(2\overrightarrow{EB}+\overrightarrow{EC}=\overrigh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 7 2017

Lời giải:

Dễ thấy \(\triangle AEO=\triangle CFO(g.c.g)\)

suy ra \(\frac{AO}{OC}=\frac{EO}{OF}=1\Rightarrow \) $O$ là trung điểm của $EF$

Do đó \(\overrightarrow{OE}+\overrightarrow{OF}=\overrightarrow{0}\)

Ta có \(AE\parallel CF\) và chiều vector ngược nhau, suy ra \(\overrightarrow{AE}\uparrow\downarrow \overrightarrow {CF}\)

Từ hai tam giác bằng nhau trên cũng suy ra \(AE=CF\)

Do đó \(\overrightarrow{AE}+\overrightarrow{CF}=\overrightarrow{0}\)\(AE=CF,AB=CD\Rightarrow EB=DF\). Từ đó dễ thấy \(BEDF\) là hình bình hành Ta có \(\overrightarrow{DE};\overrightarrow{BF}\) là hai vector ngược hướng và có độ dài bằng nhau nên \(\overrightarrow{DE}+\overrightarrow{BF}=\overrightarrow{0}\)
Giúp e những bài này với ạ1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)b) chứng minh n,h,v thẳng hàng2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung...
Đọc tiếp

Giúp e những bài này với ạ

1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:

\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)

\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)

\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)

b) chứng minh n,h,v thẳng hàng

2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.

a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)

b) Chứng minh rằng :

i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)

ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)

3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.

Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)

b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)

4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)

a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)

b)Chứng minh M,N,P thẳng hàng

 

0
2 tháng 8 2020

Bạn xem lại đề ạ!

Nếu bạn đã chứng minh được D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ

Thì dễ dàng suy ra được: \(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\)\(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\)\(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)

( Vì chúng ta có tính chất: Nếu I là trung điểm đoạn thẳng AB thì mọi điểm M ta có: \(2\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{MB}\)

11 tháng 10 2019

a.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

VT:\(\overrightarrow{AB}+\overrightarrow{CD}\)

=\(\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{CA}+\overrightarrow{AD}\)

=\(\overrightarrow{AB}+\overrightarrow{CB}=0\left(đpcm\right)\)

b.\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)

\(\Leftrightarrow\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}+\overrightarrow{DE}+\overrightarrow{BC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(LĐ\right)\)

19 tháng 12 2023

Fuck

27 tháng 7 2019
https://i.imgur.com/Ok0y1n7.jpg
27 tháng 7 2019

\(Sao ý cuối là sao sao ấy\)

2 tháng 8 2019

A B C E D G

\(\text{a) Ta có : }2\overrightarrow{CD}=3\overrightarrow{DB}\\ \Rightarrow\overrightarrow{DC}=-\frac{3}{2}\overrightarrow{DB}\\ \Rightarrow D;B;C\text{ thẳng hàng },D\text{ nằm giữa }B;C\left(\frac{3}{2}< 0\right)\\ \Rightarrow\overrightarrow{BC}=\overrightarrow{BD}+\overrightarrow{DC}=\overrightarrow{BD}+\frac{3}{2}\overrightarrow{BD}=\frac{5}{2}\overrightarrow{BD}\\ 5\overrightarrow{EB}=2\overrightarrow{EC}\\ \Rightarrow\overrightarrow{EB}=\frac{2}{5}\overrightarrow{EC}\\ \Rightarrow E;B;C\text{ thẳng hàng },B\text{ nằm giữa }E;C\left(\frac{2}{5}>0;EB< EC\right)\\ \Rightarrow\overrightarrow{BC}=\overrightarrow{EC}-\overrightarrow{EB}=\overrightarrow{EC}-\frac{2}{5}\overrightarrow{EC}=\frac{3}{5}\overrightarrow{EC}\)

\(\Rightarrow\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}\\ =\overrightarrow{AB}+\frac{2}{5}\overrightarrow{BC}=\overrightarrow{AB}+\frac{2}{5}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\\ =\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}-\frac{2}{5}\overrightarrow{AB}=\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)

\(\overrightarrow{AE}=\overrightarrow{EC}+\overrightarrow{CA}\\ =\frac{5}{3}\overrightarrow{BC}-\overrightarrow{AC} =\frac{5}{3}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)-\overrightarrow{AC}\\ =\frac{5}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}-\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}\)

\(b\text{) Theo tính chất trọng tâm }\Delta:3\overrightarrow{AG}=\overrightarrow{AA}+\overrightarrow{AB}+\overrightarrow{AC}\\ =\overrightarrow{0}+\overrightarrow{AB}+\overrightarrow{AC}\\ =\left(\frac{9}{4}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}\right)-\left(\frac{1}{2}\overrightarrow{AC}+\frac{5}{4}\overrightarrow{AC}\right)\\ =\frac{15}{4}\left(\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\right)-\frac{3}{4}\left(\frac{2}{3}\overrightarrow{AC}+\frac{5}{3}\overrightarrow{AC}\right)\\ =\frac{15}{4}\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AE}\)

2 tháng 8 2019

\(\Rightarrow\overrightarrow{AG}=\frac{5}{4}\overrightarrow{AD}-\frac{1}{4}\overrightarrow{AE}\)