Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng hệ quả định lý thales:
\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)
Áp dụng BĐT bunyakovsky:
\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)
\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)
dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)
b) chưa nghĩ :v
Theo cách dựng ta có CE vừa là đường cao, vừa là phân giác trong tam giác CDK
\(\Rightarrow\Delta CDK\) cân tại C
\(\Rightarrow DC=CK\)
Tương tự ta có: \(BM=DB\)
Mặt khác theo định lý phân giác: \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow AB.DC=AC.DB\)
\(\Rightarrow AB.DC-AC.DB=0\)
Dễ dàng chứng minh bài toán quen thuộc: \(AD^2=AB.AC-BD.DC\)
\(\Rightarrow AD^2=\left(AM-DB\right)\left(AK+DC\right)-DB.DC\)
\(=AM.AK+AM.DC-DB.AK-DB.DC-DB.DC\)
\(=AM.AK+DC\left(AM-DB\right)-DB\left(AK+DC\right)\)
\(=AM.AK+DC.AB-DB.AC\)
\(=AM.AK\)
\(\Rightarrow AK=\dfrac{AD^2}{AM}=4\)