Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\Delta ABM\infty\Delta NDA\left(g.g\right)\Rightarrow\frac{AB}{ND}=\frac{BM}{DA}\Rightarrow AB^2=BM.DN\) (vì AB = AD)
b, Ta có: \(\frac{NM}{NA}=\frac{MC}{AD}\Rightarrow\frac{AD}{AN}=\frac{MC}{MN}\)
\(\frac{CN}{AB}=\frac{MN}{AM}\Rightarrow\frac{CN}{AD}=\frac{MN}{AM}\Rightarrow\frac{AD}{AM}=\frac{CN}{MN}\)
Vậy \(\left(\frac{AD}{AM}\right)^2+\left(\frac{AD}{AN}\right)^2=\left(\frac{CN}{MN}\right)^2+\left(\frac{MC}{MN}\right)^2=\frac{MC^2+CN^2}{MN^2}=1\)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
a: Xét hình thang ABCD có MN//AB//CD
nên AM/MN=BN/NC
=>AM/AD=BN/BC(1)
Xét ΔADC có MO//DC
nên MO/DC=AM/AB(2)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(3)
Từ (1), (2) và (3) suy ra MO=ON(đpcm)
b:
Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)
MN=2ON=2OM
\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)
mà OM/AB=DO/DB
và ON/CD=BO/BD
nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)
b: Qua A kẻ đường thẳng vuông góc với AP cắt BC tại N
Xét ΔABN và ΔADP có
góc B=góc D=90 độ
góc BAN=góc DAP
=>ΔABN đồng dạng với ΔADP
=>AB/AD=AN/AP=1/3
=>AN=1/3AP
ΔANM vuông tại N có AB là đường cao
nen 1/AB^2=1/AM^2+1/AN^2=1/AM^2+9/AP^2
Xét ΔCBE có AM//BE
nên \(\dfrac{AM}{BE}=\dfrac{CM}{CB}\)
Xét ΔBDC có AM//DC
nên \(\dfrac{AM}{DC}=\dfrac{BM}{BC}\)
\(\dfrac{AM}{BE}+\dfrac{AM}{DC}=\dfrac{BM}{BC}+\dfrac{CM}{BC}\)
=>\(AM\left(\dfrac{1}{BE}+\dfrac{1}{DC}\right)=\dfrac{BC}{BC}=1\)
=>\(\dfrac{1}{AM}=\dfrac{1}{BE}+\dfrac{1}{CD}\)