K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2023

a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có

AM chung

\(\widehat{DMA}=\widehat{HMA}\)

Do đó: ΔADM=ΔAHM

=>AD=AH

mà AD=AB

nên AH=AB

b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có

AN chung

AH=AB

Do đó: ΔAHN=ΔABN

c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)

\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)

\(=\dfrac{1}{2}\cdot90^0=45^0\)

Đặt AM=x; AN=y

MN^2=AM^2+AN^2

=>\(MN=\sqrt{x^2+y^2}\)

\(P_{AMN}=AM+AN+MN=x+y+\sqrt{x^2+y^2}=2a\)

và x+y>=2*căn xy; \(\sqrt{x^2+y^2}>=\sqrt{2xy}\)

=>\(2a=x+y+\sqrt{x^2+y^2}>=2\sqrt{xy}+\sqrt{2xy}\)

=>\(2a>=\sqrt{xy}\left(2+\sqrt{2}\right)\)

=>\(\sqrt{xy}< =\dfrac{2a}{2+\sqrt{2}}\)

=>\(S_{AMN}=\dfrac{1}{2}xy< =\dfrac{1}{2}\cdot\left(\dfrac{2a}{2+\sqrt{2}}\right)^2=\left(3-2\sqrt{2}\right)a^2\)

Dấu = xảy ra khi \(x=y=\left(2-\sqrt{2}\right)a\)

20 tháng 7 2018

e, Gọi H là giao của MF , ME . Chú Minh MH.MF + NH.NF = CC^2 + CM^2

17 tháng 3 2019

HELLO

25 tháng 5 2022

a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0;\widehat{AQP}=\widehat{BQM}\).

\(\Rightarrow\)△APQ∼△BMQ (g-g)

\(\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\)

△ABQ và △PMQ có: \(\dfrac{QP}{QA}=\dfrac{QM}{QB};\widehat{AQB}=\widehat{PQM}\)

\(\Rightarrow\)△ABQ∼△PMQ (c-g-c).

 

25 tháng 5 2022

b) △ABQ∼△PMQ \(\Rightarrow\dfrac{PM}{AB}=\dfrac{PQ}{AQ};\widehat{BAQ}=\widehat{MPQ}\Rightarrow MP=\dfrac{PQ}{AQ}.AB\)

△APQ và △BPA có: \(\widehat{QAP}=\widehat{ABP}=45^0;\widehat{APB}\) là góc chung.

\(\Rightarrow\)△APQ∼△BPA (g-g)

\(\Rightarrow\widehat{AQP}=\widehat{BAP}\)

\(\widehat{APM}=\widehat{APQ}+\widehat{MPQ}=180^0-45^0-\widehat{AQP}+\widehat{BAQ}=180^0-45^0-\left(\widehat{BAP}-\widehat{BAQ}\right)=180^0-45^0-45^0=90^0\)

\(\Rightarrow\)MP⊥AN tại P.

△MPN và △AHN có: \(\widehat{MPN}=\widehat{AHN}=90^0;\widehat{ANM}\) là góc chung.

\(\Rightarrow\)△MPN∼△AHN (g-g)

\(\Rightarrow\dfrac{AH}{MP}=\dfrac{AN}{MN};\dfrac{NP}{NH}=\dfrac{NM}{NA}\Rightarrow\dfrac{NP}{NM}=\dfrac{NH}{NA}\)

△APQ và △AMN có: \(\dfrac{NP}{NM}=\dfrac{NH}{NA};\widehat{MAN}\) là góc chung.

\(\Rightarrow\)△APQ∼△AMN (c-g-c)

\(\Rightarrow\dfrac{AQ}{AN}=\dfrac{PQ}{MN}\Rightarrow\dfrac{MN}{AN}=\dfrac{PQ}{AQ}\)

\(\dfrac{AH}{MP}=\dfrac{AN}{MN}\Rightarrow AH=MP.\dfrac{AN}{MN}=\dfrac{PQ}{AQ}.AB.\dfrac{AN}{AM}=AB\) không đổi.