K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Vì ABCD là hình vuông

nên AC vuông góc với BD tại trung điểm của mỗi đường, AC=BD

=>E là trung điểm chung của AC và BD; AC=BD

=>EA=EB=EC=ED

=>A,B,C,D cùng thuộc đường tròn đường kính AC

Tâm là trung điểm E của AC

Hai trục đối xứng của đường tròn là AC,BD

b: ABCD là hình vuông

=>\(AC=\sqrt{3^2+3^2}=\sqrt{9+9}=3\sqrt{2}\left(cm\right)\)

Bán kính của (E) là \(R=\dfrac{AC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)

 

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.a) Chứng minh tam giác ACE vuông cânb) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng Bài 2:Đường tròn tâm O và một dây AB của đường...
Đọc tiếp

1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.

a) Chứng minh tam giác ACE vuông cân

b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?

c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng 

Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:

a) Góc BED = góc DAE

b) DE2 = DA.DB

Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD

 

0
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E a)CMR: CD vuông góc với AB , BE vuông góc với AC b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BCBài 3:Cho hình thang ABCD ,...
Đọc tiếp

Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó 

Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E 

a)CMR: CD vuông góc với AB , BE vuông góc với AC 

b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC

Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm 

Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn 

 

2
11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

22 tháng 3 2021

a/ Ta có

\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)

\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)

=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB

b/ Ta có

\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)

\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)

\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)

Mà \(AH\perp BC\Rightarrow DF\perp BC\)

c/

Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.

Nối I với H, D với H 

Xét \(\Delta HDF\) và \(\Delta HEI\) ta có

\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)

\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)

Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)

\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)

\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\)  => tg HDF đồng dạng với tg HEI

\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2

23 tháng 6 2017

Đường tròn

20 tháng 1 2021

A F N M O C B E

a) Xét tam giác AMB có :

MO = OA = OB ( =bk )

\(\Rightarrow MO=\frac{1}{2}AB\)

=> Tam giác AHB vuông tại M

=> EM là đường cao của tam giác ANE

- Xét tam giác ACB có : OC = OB = OA ( =bk )

\(\Rightarrow OC=\frac{1}{2}AB\Rightarrow\Delta ACB\)vuông tại C

=> NC là đường cao của tam giác ANE

=> B là giao điểm 3 đường cao của tam giác ANE

=> AB là đường cao của tam giác ANE

Vậy : \(NE\perp AB\left(đpcm\right)\)

b) Xét 2tam giác : MAF và MNE

                       Có : MA = MN (gt) 

                              MF = ME ( gt )

                              ^AMF = ^NME ( đối đỉnh )

do đó : \(\Delta MAF=\Delta NME\left(c-g-c\right)\)

=> ^AFM = ^NEM

Mà 2 góc ^AFM và ^NEM có vị trí so le 

=> AF // NE

Mà : \(NE\perp AB\)( c/m câu a ) => \(AF\perp AB\)tại A

Vậy : FA là tiếp tuyến đường tròn (O) ( đpcm )

c) Ta có : ^AMB = 90^o => \(FB\perp AN\)

                      MA = MB

=> FB là đường trung trực của AN

=> BN = BA ; FN = FA

- Xét 2 tam giác : ABF và NBF có : BN = BA ; FN = FA

FB chung

\(\Rightarrow\Delta ABF=\Delta NBF\left(c-c-c\right)\)

=> ^BNF = ^BAF = 90^o

\(\Rightarrow BN\perp FN\)tại B mà BN = BA

Vậy : FN là tiếp tuyến của đường tròn ( B ; BA ) ( đpcm )

a:

BC=BH+CH

=9+16

=25(cm)

 ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC

=>\(AH=\sqrt{9\cdot16}=12\left(cm\right);AB=\sqrt{9\cdot25}=15\left(cm\right);AC=\sqrt{16\cdot25}=20\left(cm\right)\)

b: D đối xứng A qua H

=>H là trung điểm của AD

Xét ΔBAD có BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

mà BH là đường cao

nên BH là phân giác của góc ABD

Xét ΔBAC và ΔBDC có

BA=BD

góc ABC=góc DBC

BC chung

Do đó: ΔBAC=ΔBDC

=>góc BDC=90 độ

Xét tứ giác ABDC có

góc BAC+góc BDC=90+90=180 độ

=>ABDC nội tiếp đường tròn đường kính BC

Tâm O là trung điểm của BC

Bán kính là BC/2=12,5(cm)

4 tháng 9 2023

cảm ơn bạn