Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\widehat{MIN}=90^o\) (tính chất 2 đường phân giác cắt nhau tại điểm vuông góc)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:
\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)
\(NK\) là cạnh chung
\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)
b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)
\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta MNQ\) cân tại \(N\)
Mà \(\widehat{MNQ}=60^o\)
\(\Rightarrow\Delta MNQ\) đều
Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)
\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)
\(\Rightarrow\Delta NKP\) cân tại \(K\)
c) Vì \(\Delta NMQ\) đều (chứng minh trên)
\(\Rightarrow NM=MQ=NQ=8cm\)
Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:
\(PN=2MN=2.8=16cm\)
\(\Rightarrow PQ=16-8=8cm\)
a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có
NK chung
\(\widehat{MNK}=\widehat{QNK}\)
Do đó: ΔMNK=ΔQNK
b: Ta có: ΔMNK=ΔQNK
nên NM=NQ
=>ΔNMQ cân tại N
mà \(\widehat{MNQ}=60^0\)
nên ΔMNQ đều
Xét ΔNKQ có
\(\widehat{KPN}=\widehat{KNP}\)
nên ΔNKQ cân tại K
c: Xét ΔMNP vuông tại M có
\(\cos N=\dfrac{MN}{NP}\)
=>NP=16(cm)
=>\(MP=8\sqrt{3}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A) Các cặp góc đối đỉnh là : AOC và DOC; AOD và COB.
B) Vì AOC = 40 độ
=> AOC=DOB= 40 độ
Ta có AOC + COB = 180 độ (kề bù)
=> COB=180 - 40 = 140 độ
=> COB= AOD=140 độ
C) Ta có OE là pg AOC
=> AOE = EOC
Ta lại có : AOE = FOB (đối đỉnh)
EOC=DOF( đối đỉnh)
Mà AOE= EOC(cmt)
=>DOF=FOB
=> OF là pg DOB (dpcm)
D) Trường hợp 1 : MN đi qua bờ mặt phẳng bờ AC và BD
AOM và NOB ; MOC và DON
Trường hợp 2 :MN đi qua nửa mặt phẳng bờ AD và BC
AOM và BON ; MOD và CON