Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{C_{ABC}}{C_{MNP}}=\dfrac{1}{3}\)
\(\dfrac{H_{ABC}}{H_{MNP}}=\dfrac{1}{3}\)
\(\dfrac{S_{ABC}}{S_{MNP}}=k^2=\dfrac{1}{9}\)
b: Chu vi tam giác ABC là:
60:2x1=30(cm)
Chu vi tam giác MNP là:
60:2x3=90(cm)
b) Ta có: ΔABC\(\sim\)ΔA'B'C'(gt)
nên \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{AB}{A'B'}\right)^2\)(Định lí tỉ số diện tích của hai tam giác đồng dạng)
hay \(\dfrac{S_{ABC}}{S_{A'B'C'}}=k^2\)
a. Ta có: ▲ABC∼▲MNP (gt)
=>\(\dfrac{P_{ABC}}{P_{MNP}}=\dfrac{AH}{MQ}=k=\dfrac{1}{3}\) (với AH,MQ lần lượt là đường cao của tam giác ABC, MNP)
\(\dfrac{S_{ABC}}{S_{MNP}}=k^2=\dfrac{1}{9}\)
b. Ta có: \(\dfrac{P_{ABC}}{P_{MNP}}=\dfrac{1}{3}\)(cmt)=>PMNP=3PABC
*PMNP-PABC=60cm
=>3PABC-PABC=60cm
=>2PABC=60cm
=>PABC=30cm ; PMNP=90cm
c. Ta có: \(\dfrac{S_{ABC}}{S_{MNP}}=\dfrac{1}{9}\)(cmt)=>SMNP=9SABC
*SMNP+SABC=640cm2
=>9SABC+SABC=640cm2
=>10SABC=640cm2
=>SABC=64cm2 ; SMNP=576cm2
a: ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF=k và góc B=góc E; góc BAC=góc EDF; góc C=góc F
=>AB/DE=BM/EN
mà gó B=E
nên ΔABM đồng dạng vơi ΔDEN
=>AM/DN=AB/DE=k
b: góc A=góc D
=>góc BAM=góc EDN
Xét ΔABM và ΔDEN có
góc BAM=góc EDN
góc ABM=góc DEN
=>ΔABM đồng dạng với ΔDEN
=>AM/EN=AB/DE=k
c: Xét ΔABM vuông tại M và ΔDEN vuông tại N có
góc B=góc E
=>ΔABM đồng dạng với ΔDEN
=>AM/EN=AB/DE=k
d: AB/DE=AC/DF=BC/EF=k
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=\dfrac{AB+AC+BC}{DE+DF+EF}=\dfrac{DE\cdot k+DF\cdot k+EF\cdot k}{DE+DF+EF}=k\)
=>ĐPCM
Ta có:
\(\Delta ABC\sim\Delta MNP\left(gt\right)\)
\(\Rightarrow\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}=k=\dfrac{2}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AB}{MN}=\dfrac{BC}{NP}=\dfrac{AC}{MP}=\dfrac{AB+BC+AC}{MN+NP+MP}=\dfrac{C_{ABC}}{C_{MNP}}=k=\dfrac{2}{3}\)
Vậy: ...
Bài 2 :
vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :
AEEB=ECBCAEEB=ECBC
⇒⇒ CE=AB.BCABCE=AB.BCAB
⇒⇒ CE=AE.23CE=AE.23
⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2
⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC
⇒⇒ CE=2AC=6(cm)
Bài 1: Giải
Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)
k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23
Chu vi của tam giác 1 là:
12+16+18=46(m)12+16+18=46(m)
⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)
Cạnh thứ hai của tam giác đồng dạng (2) là:
16:23=24(m)16:23=24(m)
Cạnh lớn nhất của tam giác đồng dạng (2) đó là:
69−24−18=27(m
Bài 3 tớ k bt lm
a. \(\dfrac{AB}{MN}=\dfrac{AC}{MP}=\dfrac{BC}{NP}=\dfrac{3}{2}\)
Vậy: △ABC ∼ △MNP (c.c.c)
b. Từ câu a., áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{AB}{MN}=\dfrac{AC}{MP}=\dfrac{BC}{NP}=\dfrac{AB+AC+BC}{MN+MP+NP}=\dfrac{12+24+18}{8+16+12}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{C_{ABC}}{C_{MNP}}=k=\dfrac{3}{2}\)
c. Gọi độ dài đường cao là h. Cũng từ câu a. suy ra:
\(h=k=\dfrac{3}{2}\)
Áp dụng tính chất tỉ số diện tích của hai tam giác ta được:
\(\dfrac{S_{ABC}}{S_{MNP}}=h^2=k^2=\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)