
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)

45 60 a x A B C H K
a) Kẻ đường cao BK
Ta có:
\(\sin\widehat{A}=\frac{BK}{AB};\cos\widehat{A}=\frac{AK}{AB}\)
=> \(\sin\widehat{A}+\cos\widehat{A}=\frac{BK}{AB}+\frac{AK}{AB}=\frac{AK+BK}{AB}>\frac{AB}{AB}=1\)
b) Kẻ đường cao AH.
Đặt BH = x => HC = a - x.
+) Tam giác AHB vuông cân => AH = BH =x (1)
+) Tam giác AHC có \(\tan\widehat{ACH}=\frac{AH}{HC}\Rightarrow\tan60^o=\frac{AH}{a-x}\Rightarrow AH=\sqrt{3}\left(a-x\right)\) (2)
Từ (1) ; (2) => \(x=\sqrt{3}\left(a-x\right)\Rightarrow x=\frac{\sqrt{3}a}{1+\sqrt{3}}\)
=> \(AH=\frac{\sqrt{3}a}{1+\sqrt{3}}\)
=> \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.\frac{\sqrt{3}a}{1+\sqrt{3}}.a=\frac{3-\sqrt{3}}{4}a^2\)

a, tam giác ABC vuông tại B có góc A = 30 độ => AC = 2 BC = 2. 3 = 6 cm
theo định lí Pytago ta có AB = \(\sqrt{ÃC^2-BC^2}=\sqrt{6^2-3^2}\) = \(3\sqrt{3}\) cm
góc C = 90 - 30 = 60 độ
b, tam giác ABH vuông tại H có góc A = 30 độ => AB = 2 BH => BH = \(\frac{3\sqrt{3}}{2}\)cm
theo định lí Pytago ta có AH = \(\sqrt{AB^2-BH^2}=\sqrt{\left(3\sqrt{3}\right)^2-\left(\frac{3\sqrt{3}}{2}\right)^2}=4,5cm\)
diện tích tam giác ABH =\(\frac{1}{2}.BH.AH=\frac{1}{2}.\frac{3\sqrt{3}}{2}.4,5=\frac{27\sqrt{3}}{8}\)cm vuông

a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)