K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

23 tháng 6 2019

M N x y z t

Giải : a) xy là đường trung trực của đoạn thẳng MN => \(\widehat{xOM}=\widehat{xON}=90^0\)

Do Ot là tia p/giác của \(\widehat{xON}\) nên

  \(\widehat{xOt}=\widehat{tON}=\frac{\widehat{xON}}{2}=\frac{90^0}{2}=45^0\)

b) Do Oz là tia p/giác của \(\widehat{xOM}\)nên

  \(\widehat{xOz}=\widehat{zOM}=\frac{\widehat{xOM}}{2}=\frac{90^0}{2}=45^0\)

Do Ox nằm giữa Ot và Oz nên \(\widehat{tOx}+\widehat{xOz}=\widehat{tOz}\)

=> \(\widehat{tOz}=45^0+45^0=90^0\)

=> Oz \(\perp\)Ot 

Vì Ot là phân giác xON 

=> xOt = NOt = 1/2 xON= 45 độ

Vì Oz là phân giác xOM 

=> xOz = mOz = 45 độ

=> zOt = 45 + 45 = 90 độ

=> OZ vuông góc với OT

25 tháng 6 2015

Ta có : a<b => a+a < a+b

                  => 2a < a+b    (1)

           c<d => c+c < c+d

                 => 2c < c+d     (2)

           m<n => m+m < m+n

                  => 2m < m+n   (3)

Từ (1); (2) và (3). => 2a + 2c +2m < a+b+c+d+m+n

                         => 2(a+c+m) < a+b+c+d+m+n

                        => \(\frac{a+c+m}{a+b+c+d+m+n}\)\(\frac{1}{2}\)( đpcm)

25 tháng 6 2015

Vì a<b;c<d;m<n

=>a+c+m<b+d+n

=>a+a+c+c+m+m<a+b+c+d+m+n

=>2a+2c+2m<a+b+c+d+m+n

=>2(a+c+m)<a+b+c+d+m+n

=>\(\frac{a+c+m}{2\left(a+c+m\right)}>\frac{a+c+m}{a+b+c+d+m+n}\)

=>\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)

=>

ĐPCM.

l-i-k-e cho mình nha bạn.

9 tháng 7 2018

Bạn tham khảo nhé 

a )  Ta có : 

\(\left(-\frac{1}{5}\right)^{300}=\left(\frac{1}{5}\right)^{300}=\frac{1}{5^{300}}=\frac{1}{\left(5^3\right)^{100}}=\frac{1}{125^{100}}\)

\(\left(-\frac{1}{3}\right)^{500}=\left(\frac{1}{3}\right)^{500}=\frac{1}{3^{500}}=\frac{1}{\left(3^5\right)^{100}}=\frac{1}{243^{100}}\)

Do \(\frac{1}{125^{100}}>\frac{1}{243^{100}}\left(125^{100}< 243^{100}\right)\)

\(\Rightarrow\left(-\frac{1}{5}\right)^{300}>\left(-\frac{1}{3}\right)^{500}\)

b ) 

Ta có : 

\(2550^{10}=\left(50.51\right)^{10}=50^{10}.51^{10}\)

\(50^{20}=50^{10}.50^{10}\)

Do \(50^{10}.51^{10}>50^{10}.50^{10}\)

\(\Rightarrow50^{20}< 2550^{10}\)

c ) 

Ta có : 

\(2^{100}=\left(2^4\right)^{25}=16^{25}\)

\(3^{75}=\left(3^3\right)^{25}=27^{25}\)

\(5^{50}=\left(5^2\right)^{25}=25^{25}\)

Do \(16^{25}< 25^{25}< 27^{25}\)

\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)

9 tháng 7 2018

b)255010>250010=5020

=>255010>5020

A B C D E K

Bài làm

Gọi đường thẳng đi qua điểm D cắt BE tại I

Ta có: \(\widehat{KDA}=\widehat{BDI}\)

Xét tam giác BDI có:

\(\widehat{BDI}+\widehat{DBI}=90^0\)    ( 1 )

Xét tam giác BAE có:

\(\widehat{ABE}+\widehat{BEA}=90^0\)    ( 2 ) 

Từ ( 1 ) ( 2 ) => \(\widehat{BDI}=\widehat{BEA}\)

Mà \(\widehat{KDA}=\widehat{BDI}\)( cmt  )

=> \(\widehat{KDA}=\widehat{BEA}\)

Xét tam giác KDA và tam giác BEA có:

\(\widehat{DAK}=\widehat{BAE}\)

AD = AE ( giả thiết )

\(\widehat{KDA}=\widehat{BEA}\)

=> Tam giác KDA = tam giác BEA  ( g.c.g )

=> AK = AB ( hai cạnh tương ứng )

Mà AB = AC ( giả thiết )

=> AK = AC ( đpcm )

# Học tốt #