Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -Vì A=B mà 2 góc này nằm ở vị trí SLT với nhau =>AB//CD
b) -Vì AB//CD => B=C1=50o (2 góc SLT)
-Vì C1+C2=180o (2 góc kề bù)
=>C2=180o-C1=180o-50o=130o
-Vì C1 và C2 là 2 góc đối đỉnh =>C1=C3=50o
-Vì C3+C4=180o (2 góc kề bù)
=>C4=180o-C3=180o-50o=130o
c) (bạn tự vẽ hình nha)
-Vì Ax là tia phân giác của BAD =>A1=A2=1/2*A=1/2*100o=50o
-Vì A2=B (=50o) mà 2 góc này nằm ở vị trí SLT với nhau => Ax//BC
~~~mk tự đánh số thứ tự nên bn cẩn thận nhìn kĩ nha. vs lại phần c) mk ngại vẽ lại hình nên bn tự vẽ nha~~~
Ta có
\(\widehat{C1}+\widehat{C2}=180^0\) ( kề bù ) (1)
\(\widehat{C1}-\widehat{C2}=40^0\) (giả thiết ) (2)
Cộng (1) và (2)
\(\Rightarrow\left(\widehat{C1}+\widehat{C2}\right)+\left(\widehat{C1}-\widehat{C2}\right)=180^0+40^0\)
\(\Rightarrow2.\widehat{C1}=220^0\)
\(\Rightarrow\widehat{C1}=110^0\)
\(\Rightarrow\widehat{C2}=70^0\)
Mặt khác
\(\begin{cases}\widehat{C1}=\widehat{D2}\\\widehat{C1}=\widehat{D1}\end{cases}\) (a//b)
\(\Rightarrow\begin{cases}\widehat{D1}=70^0\\\widehat{D2}=110^0\end{cases}\)
Có: \(\widehat{C_1}+\widehat{C_2}=180\) (cạp góc kề bù)
=> \(\begin{cases}\widehat{C_1}+\widehat{C_2}=180\\\widehat{C_1}-\widehat{C_2}=40\end{cases}\) \(\Leftrightarrow\begin{cases}40+\widehat{C_2}+\widehat{C_2}=180\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)
\(\Leftrightarrow\begin{cases}2\widehat{C_2}=140\\\widehat{C_1}=40+\widehat{C_2}\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{C_2}=70\\\widehat{C_1}=110\end{cases}\)
=> \(\widehat{C_1}=\widehat{D_2}=110\) (cặp góc soletrong do a//b)
\(\widehat{C_2}=\widehat{D_1}=70\) (cặp góc soletrong do a//b)
1)
Ta có: góc xCt và góc xOy là 2 góc đồng vi
Vậy để Ct//Oy thì góc xCt= góc xOy
Mà góc xOy=60 độ nên góc xCt=60 độ
2) Ta có góc A1+góc A2+ góc B1=288 độ
Mà góc A1+góc A2=180 độ ( 2 góc kề bù)
=> góc B1= 288 độ - 180 độ = 108 độ
Lại có : góc A1 = 2/3 góc A2
=> góc A1= 180 độ : (2+3) . 2 = 72 độ
Mặt khác: góc A1 + góc B1= 72 độ + 108 độ = 180 độ
Mà góc A1 và góc B1 là 2 góc ngoài cung phía nên a//b
Hình thiếu dữ kiện nên vẽ lại nhé!!
B C A D M
Gọi M là giao điểm của BC và AD
Xét tam giác ABM và tam giác DBM có:
AM = MD (GT)
\(\widehat{AMB}=\widehat{DMB}\)=900
BM: cạnh chung
=> tam giác ABM = tam giác DBM (c.g.c)
=> \(\widehat{ABM}=\widehat{DBM}\) (2 góc tương ứng)
=> BM hay BC là phân giác góc ABD (đpcm)
Xét tam giác ACM và tam giác DCM có:
AM = MD (GT)
\(\widehat{AMC}=\widehat{DMC}\)=900
CM: cạnh chung
=> tam giác ACM = tam giác DCM (c.g.c)
=> \(\widehat{ACM}=\widehat{DCM}\) (2 góc tương ứng)
=> CM hay CB là phân giác góc ACD (đpcm)
x A y C t B x y
Câu a ta có :
At > yy (gt)
mà xx /yy (gt)
At yy ( hệ quả tiền đề Ô =lít)
câu b:
Vì AT tia phân giác xAb
=> xAt = =BaT =40 độ
Vậy :
bCE>BEC
~Study well~
Vì BM là tia pg của \(\widehat{ABC}\) (gt)
=>\(\widehat{ABM}=\widehat{MBC}\)
Mà \(\widehat{MBC}=70\left(gt\right)\\\)
=> \(\widehat{ABM}=\widehat{MBC}=70\)
Có : \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=70+70=140\)
Có: \(\widehat{ABC}+\widehat{BCM}=140+40=180\)
=> AB//MC
a) Ta có xx' cắt BC tại B => B1 là đối đỉnh B3 (1)
Mà B3=70* (2)
Từ (1)và(2) suy ra B1=70*
Ta có C2 và B3 là 2 góc trong cùng phía
=> C2+B3=180*
C2=180*-70*=110*
a. Ta có: \(\widehat{B_1}=\widehat{B_3}=70^0\) (đối đỉnh)
Ta có: \(\left\{{}\begin{matrix}xx'\perp AD\\yy'\perp AD\end{matrix}\right.\)=> xx'//yy'
\(\Rightarrow\widehat{B_3}+\widehat{C_2}=180^0\)(2 góc trong cùng phía)
\(\Rightarrow\widehat{C_2}=180^0-\widehat{B_3}=180^0-70^0=110^0\)
b. Ta có: xx'//yy' (cmt)
\(\Rightarrow\widehat{BEC}=\widehat{ECy'}\)
Mà \(\widehat{ECy'}=\widehat{BCE}\) (CE là phân giác)
\(\Rightarrow\widehat{BEC}=\widehat{BCE}\)