K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

 

Giải thích các bước giải:

Kẻ Cz // AB

⇒ˆABC+ˆBCz=180°⇒ABC^+BCz^=180°(2 góc  trrong cùng phía bù nhau)

Ta có: ˆABC+ˆBCD+ˆCDE=360°ABC^+BCD^+CDE^=360°

=ˆABC+ˆBCz+ˆzCD+ˆCDE=360°=ABC^+BCz^+zCD^+CDE^=360°

⇒180°+ˆzCD+ˆCDE=360°⇒180°+zCD^+CDE^=360°

⇒ˆzCD+ˆCDE=360°−180°=180°⇒zCD^+CDE^=360°-180°=180° mà 2 góc này nằm ở vị trí trong cùng phía

=> DE // Cz mà Cz // AB

=> AB // DE (đpcm)

30 tháng 11 2021

e mới lớp 5 nên chịu

thế cũng ko cần bình luận đâu:)

a: góc BAD=góc CAD=góc B

góc EDC=góc B

góc DEF=góc ADE=góc DAB=góc B

b: Ta có: góc ADE=góc BAD

góc FDE=góc B

mà góc BAD=góc B

nên góc ADE=góc FDE

hay DE là phân giác của góc ADC

góc CEF=góc EAD

góc DEF=góc ADE

mà góc EAD=góc ADE

nên góc CEF=góc DEF

hay EF là phân giác của góc DEC

4 tháng 10 2021

Gọi I là điểm nằm trong đoạn thẳng cách D qua C

Góc CEF = Góc ICE=70 độ (2 góc so le trong)

Góc CAB =Góc ACI =50 độ (2 góc so le trong)

=> góc ACE= Góc ICE + góc ACI 

                  =70 độ +50 độ

                   = 120 độ 

7 tháng 3 2023

a)

Xét \(\Delta AOD\) và \(\Delta COB\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{O}:chung\\OB=OD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)

\(\Rightarrow AD=BC\left(\text{2 cạnh tương ứng}\right)\left(\text{đpcm}\right)\)

b) 

Nối A với C

Ta có: \(\left\{{}\begin{matrix}OA=OC\\OB=OD\end{matrix}\right.\left(gt\right)\Rightarrow OA-OB=OC-OD\)

Hay \(AB=CD\)

Xét \(\Delta ABC\) và \(\Delta CDA\) có: \(\left\{{}\begin{matrix}AB=CD\left(cmt\right)\\AC:chung\\AD=BC\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta DCA\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{CDA}\left(\text{2 góc tương ứng}\right)\)

Vì \(\Delta AOD=\Delta COB\left(cmt\right)\Rightarrow\widehat{A}=\widehat{C}\left(\text{2 góc tương ứng}\right)\)

Xét \(\Delta ABE\) và \(\Delta CDE\) có: \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CDA}\left(cmt\right)\\AB=CD\left(cmt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABE=\Delta CDE\left(g.c.g\right)\left(\text{đpcm}\right)\)

c) Vì \(\Delta ABE=\Delta CDE\left(cmt\right)\Rightarrow AE=CE\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta AOE\) và \(\Delta COE\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\\AE=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOE=\Delta COE\left(c.g.c\right)\\ \Rightarrow\widehat{AOE}=\widehat{COE}\left(\text{2 góc tương ứng}\right)\)

`=> OE` là phân giác của \(\widehat{xOy}\) (đpcm)

7 tháng 3 2023

em bổ sung hình nhé

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD. a) Chứng minh ΔAHB = ΔDBH. b) Chứng minh AB//HD. c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH. d) Tính góc ACB , biết góc BDH= 350 . Bài 6 : Cho tam giác ABC cân tại A và có . 1. Tính và 2. Lấy D thuộc AB, E thuộc AC sao cho AD = AE....
Đọc tiếp

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD. a) Chứng minh ΔAHB = ΔDBH. b) Chứng minh AB//HD. c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH. d) Tính góc ACB , biết góc BDH= 350 . Bài 6 : Cho tam giác ABC cân tại A và có . 1. Tính và 2. Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC. Gia sư Thành Được www.daythem.edu.vn Bài 7 : Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE. 1. Chứng minh : DB = EC. 2. Gọi O là giao điểm của BD và EC. Chứng minh : OBC và ODE là cân. 3. Chứng minh rằng : DE // BC. Bài 8 : Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB. 1. Chứng minh : CD // EB. 2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF. Bài 9 : Cho tam giác ABC vuông tại A có . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh : 1. Tam giác ACE đều. 2. A, E, F thẳng hàng. Bài 10 : Cho tam giác ABC vuông góc tại A có góc B = 75º; BC = 10 cm . a) Tính góc C. b) Trên cạnh BA kéo dài về phía A đoạn AD = AB, Tính diện tích  ABD (Gợi ý: Hạ đường cao sẽ có  vuông với góc nhọn = 30º )

1
6 tháng 11 2017

Giải:

a) Có hai trường hợp xảy ra:

\(\Delta ABC=\Delta DEF\left(c.g.c\right)\)

\(\Delta ABC=\Delta DEF\left(g.c.g\right)\)

Hình vẽ:

A B C D E F

b) Có ba trường hợp xảy ra:

\(\Delta ABC=\Delta DEF\left(c.c.c\right)\)

\(\Delta ABC=\Delta DEF\left(c.g.c\right)\)

\(\Delta ABC=\Delta DEF\left(g.c.g\right)\)

Hình vẽ:

A B C D E F

c) Có một trường hợp xảy ra:

\(\Delta ABC=\Delta DEF\left(c.c.c\right)\)

Hình vẽ:

A B C D E F

d) Ở trường hợp này không có trường hợp hai tam giác bằng nhau.

6 tháng 11 2017

Bạn ơi, mình chưa học đến 3 trường hợp của tam giác đâu. Mong sau khi xem được tin nhắn này bạn sẽ giải lại theo cách khác nhé để mình dễ hiểu hơn. Cảm ơn bạn nhiều nha!!!vui